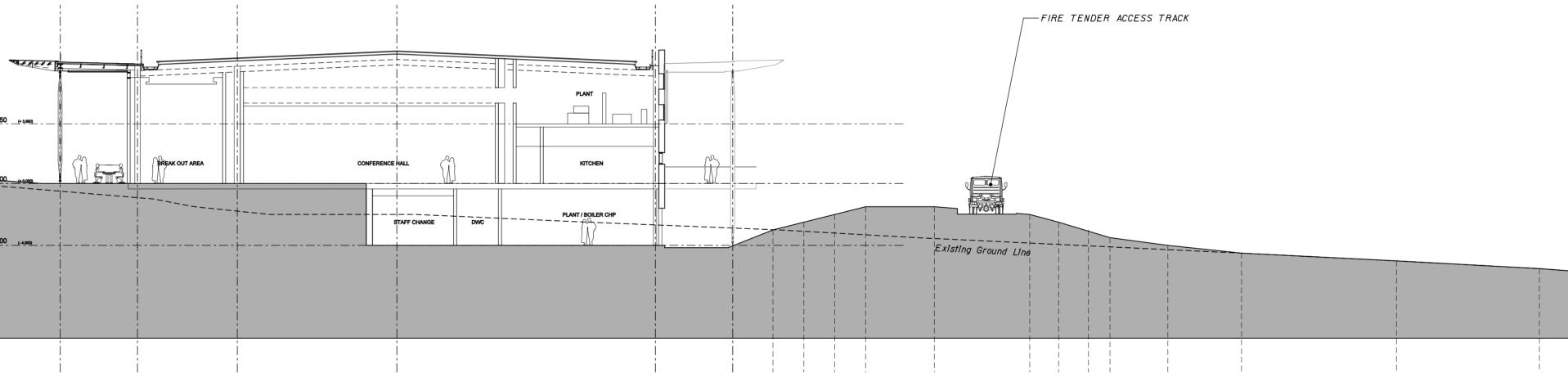

A1




09003-361/01 HOTEL BUILDING: SECTION D-D SCALE 1:200

| Existing Ground Line |  | <u>+ 1120.350 (+ 3.889</u><br><u>+ 116.500 (+ 3.000</u><br><u>+ 112.500 (+ 4.000</u> |  |
|----------------------|--|--------------------------------------------------------------------------------------|--|
|                      |  |                                                                                      |  |

## 09003-361/02 HOTEL BUILDING: SECTION E-E SCALE 1:200



| PLANT | SPA |  | Existing Ground |
|-------|-----|--|-----------------|
|       |     |  |                 |



| oies                                                                                                                                             |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|--|
| To be read with CDM Risk Register<br>Do not scale, check this is the latest version, if in doubt, ask see drawing issue log<br>for issue history |  |
|                                                                                                                                                  |  |
|                                                                                                                                                  |  |
|                                                                                                                                                  |  |
|                                                                                                                                                  |  |
|                                                                                                                                                  |  |
|                                                                                                                                                  |  |

NOTE:

All public realm/landscaping shown for indicative purposes only.
 All internal layouts shown for indicative purposes only.

nd Line

FIRE TENDER ACCESS TRACK

| · - | +  |   |   |     |   |
|-----|----|---|---|-----|---|
|     | i  |   |   |     |   |
|     |    |   |   |     |   |
|     |    | 1 |   | l l |   |
| i   | i  | 1 |   |     |   |
|     |    | 1 |   |     |   |
|     |    | 1 |   | l l | 1 |
| i   | i  | 1 |   |     |   |
|     |    |   |   |     |   |
|     | i  |   | I |     |   |
| i   | l. | 1 |   |     |   |



Capabilities on project: Water

## Appendix C: Environment Agency Flooding Information

creating a better place



Mr Edward Jones Faber Maunsell Ltd 160 Croydon Road Beckenham Kent BR3 4DE Our Ref: MC 15707/DT Your Ref: N/A

Date:

05 December 2008

Dear Mr Jones

## Re: national Football Centre, Burton upon Trent

Thank you for your e-mail dated 18 November 2008 requesting information relating to the above site.

According to our published Flood Map, which provides a general estimate of the **likelihood** of flooding across England & Wales, the majority of the property/site is shown to be outside of the Extreme Flood Outline (the area which may have an annual chance of flooding of 1 in 1000 (0.1%) from rivers ignoring the presence and effect of flood defences).

## However, a small percentage is in floodplain (1in100yr)

Our published flood map which provides a general estimate of the likelihood of flooding across England & Wales, the site is shown to be within an area which may have an annual chance of flooding of 1% (1 in 100) or greater from rivers, ignoring the presence and effect of flood defences. Please see the supporting map to identify the Flood Zone.

## **Historic Flooding**

Following examination of our records of Historic Flooding (see explanation below) we have no record of flooding in the area. This does



not mean that the area of the property / site has never flooded, only that we do not currently have records of flooding in this area.

You may also wish to contact your local authority or internal drainage board, to see if they have other relevant local flood information.

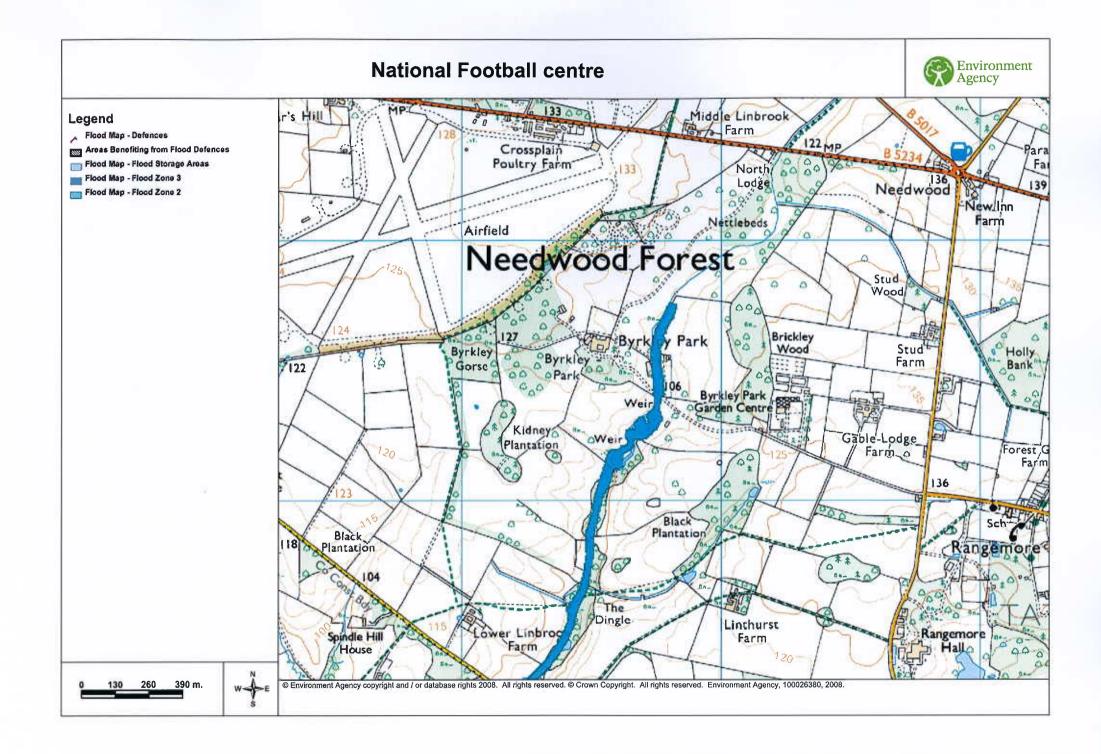
## What are our records of Historic Flooding?

Our records of Historic Flooding show the extents of known flooding from rivers, the sea, and groundwater. It cannot show all the flooding that may ever have occurred – we can only show flooding where we have adequate records. So, just because an area of land is shown outside the extents of our recorded flooding does not mean it has never flooded. As more data on historic flooding comes to light, and as flood incidents occur, then we will record this where we have adequate information to do so.

## **Flood Zones**

The flood zones in this area where produced using our generalised flood mapping, we are unable to provide level data for this location.

Our Flood Map shows the extent of the natural floodplain area, assuming there are no flood defences present. **This is a precautionary approach** in case flood defences are overtopped or breached.


Yours sincerely

Dawn JW Taylor External Relations Assistant

Direct Dial: 01543 405004 Direct e-mail: midscentral@environment-agency.gov.uk

| MARER (ALLINISTELL | ACCOM Bockenha |
|--------------------|----------------|
| Server in by       | E. Jones       |
|                    |                |
|                    | 8190           |
| classic by         |                |
|                    |                |
| 16.2               |                |

Environment Agency Sentinel House, 9 Wellington Crescent, Fradley Park, Lichfield, Staffordshire, WS13 8RR Customer Service Line: 08708 506 506 Email: enquires@environment-agency.gov.uk <u>www.environment-agency.gov.uk</u> G;\Plan & CS\ER\File Plan December 2006\Influence and Inform\Requests for Information\FOI and EIR\SEARCHES\RESPONSES\MC15700-15799\MC15707 FABER MAUNSELL.doc



### Notice for the supply of Environment Agency information (Standard Notice – Commercial)

- 1. Nothing in this notice will in any way restrict your statutory or any other rights of access to the Information. If you wish to do anything in excess of those rights you may do so in accordance with the following paragraphs only if you agree to all the terms.
- 2. All intellectual property rights in the documents, data or information supplied to you (referred to as "the Information") whether owned by the Environment Agency (referred to as "Agency information") or third parties (referred to as "Third Party information") will continue to be owned by them.
- The information has not been prepared to meet your or anyone else's individual requirements. It is your responsibility to ensure that the Information meets your needs.
- 4. The Environment Agency cannot ensure and therefore gives no promise that the Information in its possession will always be accurate, complete, up to date or valid.
- 5. The Environment Agency will take reasonable precautions to ensure that we provide you with an accurate copy of the Information from our records.
- 6. If we have specified that you must pay us for supply of the Information you must pay us before we respond to your request. You will only be able to cancel and request your fee back up to the point when we start work on providing the requested information.
- 7. If you have asked for the Information to be supplied in an electronic format we cannot guarantee that either the disk or the data file is free of any defects and you should check it for viruses and other items that may affect your computer.
- 8. Use of Third Party information, including copying, must be limited to statutory rights. This generally means that you will need to seek permission to copy. Third Party information may include information from our public registers, which has been supplied to us by a third party, for example the Information provided in an application form.

### Permitted use of Agency information

- 9. As you have paid us our internal commercial usage charge (currently £10) you may take unlimited copies of Agency information (exactly as it is) for the internal purposes of your business (commercial internal limited use), provided that:
  - a) you ensure that all copies are attributed to the Environment Agency;
  - b) you do not amend or alter the Information, or merge it with other information;
  - c) you do not supply the Information (or any information derived from, or based on the use of it) to others.
- 10. If you are a professional advisor and you have paid us our internal commercial usage charge (currently £10) you may in addition to the rights in paragraph 9, give copies of Agency information (exactly as it is) to your client and any other person who reasonably requires a copy (limited professional use), provided that:
  - a) any copies you send are in connection with the specific transaction or matter for which you obtained the Information from the Environment Agency;
  - b) you make no charge for supplying the Information other than for your actual costs and time incurred;
  - c) you attach a copy of this notice and require all recipients to comply with it.

Recipients of information under this paragraph do not need to pay any additional fee as long as they use the Information exactly as it is, internally and only for the same specific transaction or matter.

11. Please contact us if you need permission for any other use.

It is important that you also read any additional information or warning we give you about specific information.

www.environment-agency.gov.uk

G:\Plan & CS\ER\File Plan December 2006\Influence and Inform\Requests for Information\FOI and EIR\SEARCHES\RESPONSES\MC15700-15799\MC15707 FABER MAUNSELL.doc

Capabilities on project: Water

Appendix D: Preliminary Foul and Surface Water Drainage Strategy

The Football Association

The National Football Centre, St. George's Park

Preliminary Foul and Surface Water Drainage Strategy

The Football Association

## The National Football Centre, St. George's Park

Preliminary Foul and Surface Water Drainage Strategy

February 2010

This report takes into account the particular instructions and requirements of our client. It is not intended for and should not be relied upon by any third party and no.

relied upon by any third party and no responsibility is undertaken to any third party

Ove Arup & Partners Ltd

Central Square, Forth Street, Newcastle upon Tyne NE1 3PL Tel +44 (0)191 261 6080 Fax +44 (0)191 261 7879 www.arup.com

Job number 209289

# ARUP

### **Document Verification**

Page 1 of 1

| Job title        |          | The National Football Centre, St. George's Park |                                                                                 |                             | Job number     |  |
|------------------|----------|-------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------|----------------|--|
|                  |          |                                                 | 209289                                                                          |                             |                |  |
| Document         | title    | Preliminary F                                   | oul and Surface Wate                                                            | r Drainage Strategy         | File reference |  |
|                  |          |                                                 |                                                                                 | 27                          |                |  |
| Document         | ref      | 209289/CIV/                                     | 01                                                                              |                             |                |  |
| Revision         | Date     | Filename                                        | RP-CDH-Drainage                                                                 | Strategy-221209.doc         |                |  |
| Draft 1          | 22/12/09 | Description                                     | First draft                                                                     |                             |                |  |
|                  |          |                                                 |                                                                                 |                             |                |  |
|                  |          |                                                 | Prepared by                                                                     | Checked by                  | Approved by    |  |
|                  |          | Name                                            | Chris Heath                                                                     | Daren Carr                  | Daren Carr     |  |
|                  |          | Signature                                       |                                                                                 |                             |                |  |
| Issue            | 21/01/10 | Filename                                        | RP-CDH-Drainage                                                                 | Strategy-ISSUE-210110.dd    | )<br>)C        |  |
|                  |          | Description                                     | Amended to incorp                                                               | orate EA consultation respo | onse           |  |
|                  |          |                                                 |                                                                                 |                             |                |  |
|                  |          |                                                 | Prepared by                                                                     | Checked by                  | Approved by    |  |
|                  |          | Name                                            | Chris Heath                                                                     | Andy Johnson                | Andy Johnson   |  |
|                  |          | Signature                                       |                                                                                 |                             |                |  |
| Issue 2 11/02/10 |          | Filename                                        | RP-CDH-Drainage                                                                 | Strategy-ISSUE-210110.dd    | <br>DC         |  |
|                  |          | Description                                     | Amended to incorporate NLP comments                                             |                             |                |  |
|                  |          |                                                 |                                                                                 |                             |                |  |
|                  |          |                                                 | Prepared by                                                                     | Checked by                  | Approved by    |  |
|                  |          | Name                                            | Chris Heath                                                                     | Daren Carr                  | Andy Johnson   |  |
|                  |          | Signature                                       |                                                                                 |                             |                |  |
| Issue 3          | 12/02/10 | Filename                                        |                                                                                 | Strategy ISSUE 3 120210     | doc            |  |
| 133UE J          | 12/02/10 | Description                                     | RP-CDH-Drainage Strategy-ISSUE 3-120210.doc         Formatting error corrected. |                             |                |  |
|                  |          | Description                                     |                                                                                 |                             |                |  |
|                  |          |                                                 | Prepared by                                                                     | Checked by                  | Approved by    |  |
|                  |          | Name                                            | Chris Heath                                                                     | Daren Carr                  | Andy Johnson   |  |
|                  |          | Signature                                       |                                                                                 |                             |                |  |
|                  |          | Signaturo                                       |                                                                                 |                             |                |  |

Issue Document Verification with Document

## Contents

|   |          |                                       | Page |
|---|----------|---------------------------------------|------|
| 1 | Introduc | ction                                 | 1    |
| 2 | Environ  | ment Agency Consultation              | 1    |
| 3 | Foul dra | ainage proposals                      | 1    |
| 4 | Surface  | e water drainage proposals            | 2    |
|   | 4.1      | Existing pitches and storage facility | 2    |
|   | 4.2      | Potential for infiltration            | 2    |
|   | 4.3      | Surface water management proposals    | 2    |
|   | 4.3.1    | Road                                  | 2    |
|   | 4.3.2    | Car parks                             | 2    |
|   | 4.3.3    | Other hardstandings                   | 3    |
|   | 4.3.4    | Building roofs                        | 3    |
|   | 4.3.5    | Below ground storage                  | 3    |
|   | 4.3.6    | Wetland                               | 3    |
|   | 4.3.7    | Storage swales                        | 4    |
|   | 4.4      | Preliminary Design                    | 4    |
|   | 4.4.1    | Climate Change                        | 4    |
|   | 4.4.2    | Design Proposals                      | 4    |

### **Drawings**

Drawing 1 C.960.SK.001 Surface water drainage strategy
Drawing 2 C.960.SK.002 Foul water drainage strategy
Drawing 3 C.960.SK.003 Impermeable areas and surface water storage features
Drawing 4 C.960.SK.004 Storage swales typical details
Drawing 5 C.960.SK.005 Roadside swales and filter trenches typical details

## Appendices

Appendix A Wastewater Treatment Facility Preliminary Information Appendix B Greenfield Runoff Calculations Appendix C Surface Water Drainage - Preliminary Design Calculations

Appendix D

Environment Agency Consultation

## **1** Introduction

This report summarises the foul and surface water drainage strategy for the proposed sports and leisure development at St George's Park, formerly named Byrkley Park, Burton upon Trent.

The development was subject to a previous planning application (PA/16573/010) in Jun 2001, which received consent in September 2001. Correspondence from ESBC dated May 2002 advised that conditions relating to the disposal of foul and surface water attached to the original application had been discharged. Acceptable proposals were:

- Foul to drain to a wastewater treatment facility, with treated effluent discharging to the Lin Brook;
- A surface water system incorporating recycling to use as irrigation water.

The present proposals include the provision of a two storey prestige hotel, indoor sports facilities, an indoor synthetic pitch, associated car parking and hard and soft landscaping.

## 2 **Environment Agency Consultation**

The Environment Agency were consulted with Draft 1 of this report. The Agency confirmed that they have no objection to the development in principle, subject to:

- The provision of an adequate flood risk assessment;
- Consideration of green roofs to be provided within the development proposals, or justification as to why green roofs have been discounted;
- A drainage system to deal with surface water up to the critical 1 in 100 year event with an allowance of 30% increase in peak rainfall intensity to account for potential climate change;
- Two chains of treatment to be incorporated into the surface water drainage system receiving flows from car parks and hardstandings;
- A consent being required for the discharge of treated foul effluent; and
- A sampling point provided downstream of the wastewater treatment facility.

The Agency's consultation response is included in Appendix D.

## **3 Foul drainage proposals**

Public sewer records indicate that there are no public sewers local to the development site.

As such, and as with the previously submitted scheme, it is proposed that foul flows are conveyed to a wastewater treatment facility provided as part of the development. Treated effluent will be discharged to the Lin Brook, subject to the consent of the Environment Agency, either directly or via additional treatment as necessary.

Preliminary foul drainage proposals are indicated on drawing C.960.SK.002.

Initial treatment proposals from Conder products are included in Appendix A.

The proposed community changing facilities will connect to the main development drainage.

Sanitary appliances at the proposed gatehouse will connect to a septic tank or package treatment plant, discharging treated effluent to the Lin Brook with any additional treatment necessary, and subject to Environment Agency consent.

## 4 Surface water drainage proposals

### Introduction

The development site forms part of a larger overall development, comprising a number of grass and synthetic pitches, and small training facilities. The existing pitches drain to a storage facility. Stored water is used for pitch irrigation, and the facility has an overflow to the Lin Brook.

The development site comprises undeveloped grassed/vegetated land, areas that have been partially prepared for the previously proposed development, and a full size synthetic football pitch that will be covered as part of the proposals.

The proposals include approximately 6.1 ha of building roofs, car parks, roads and other hard surfaces.

The overall development setting, development layout, and site topography lead the design of surface water drainage features towards sustainable techniques, with runoff being controlled at source where possible and the incorporation of soft engineered solutions.

### 4.1 Existing pitches and storage facility

It is proposed that the existing pitch drainage and irrigation system will remain unchanged by the proposed development, and that the proposed development will drain to a separate outfall.

Should there be insufficient runoff from the pitches to meet the irrigation demand, then it may be possible to divert some of the runoff from the proposed development to the storage facility to supplement the runoff from the pitches, and to reduce potable water demand. This should be considered during detailed design and discussed with the Environment Agency and facility managers as necessary.

### 4.2 **Potential for infiltration**

Ground investigations and geotechnical studies undertaken suggest that the proposed site will not be suitable for infiltration drainage, due to underlying impermeable ground conditions. A positive outfall for surface water is therefore required.

### 4.3 Surface water management proposals

Preliminary surface water drainage proposals are indicated on drawing C.960.SK.001.

Proposals are subject to budgetary and site constraints, and will be development further during detailed design, but are expected to include:

### 4.3.1 Road

Shallow roadside swales are provided to the existing site access road. It is proposed that a similar approach is adopted for new roads provided as part of the development.

Where the longitudinal fall on a new road is 1 in 40 or flatter, a shallow roadside swale will be provided to accept runoff from the road surface. Check dams will be provided at intervals in accordance with the guidance in CIRIA report C697. Flow control will be provided to swales along flat stretches of road in order to further attenuate runoff.

Swales will be a maximum of 600mm in depth, with side slopes of 1 in 4 and a minimum base width of 0.5m.

Where the longitudinal fall in steeper than 1 in 40, filter drains will be provided as an alternative in order to reduce the risk of erosion.

### 4.3.2 Car parks

Permeable surfaces will be incorporated where appropriate within the three car parking areas.

Topography and the resultant car park gradients will limit the volume within the car park construction available for storage, although some attenuation and storage should still be possible. Permeable surfacing will also provide the first level of treatment of surface water runoff.

### 4.3.3 Other hardstandings

Other hardstandings will be drained to adjacent swales, filter trenches or, where development proposals do not allow this, via a gullied system.

### 4.3.4 Building roofs

Rainwater harvesting will be considered to reduce surface water volumes, and to reduce potable water demand. Only water from roofs would be harvested, due to the additional treatment that may be required and potential for contamination resulting from using water from other areas of hardstanding.

The provisions of rainwater harvesting will be subject to budgetary and operational constraints (it may not be acceptable to hotel operators to use recycled water due to discolouration).

The opportunity for implementing green roofs has been explored in great detail for the development.

However there are significant areas of roof that require other architectural treatments and material specifications to facilitate the functions within the building, and the 'green' credentials of these spaces. For example; the unheated Indoor Training Hall requires a Teflon fabric roof to allow natural light into the building, minimising the need for artificial lighting; and the multi-purpose hall has north lights, solar thermal collectors and windcatchers, all designed to minimise energy usage.

Open plant areas are provided to the central section of the sport building and to the hotel roof, avoiding the need for energy buildings that would otherwise be located within the landscape, and roof lights are provided throughout to minimise the requirement for artificial lighting. The only available and viable roof spaces available for green roofs are therefore limited.

Although green roofs can offer advantages over traditional roofs in the interception and retention of rainfall from the early part of storms or from light rainfall, for single severe storms, the benefit in providing a green roof to the limited areas available, simply to reduce storage volume elsewhere in the drainage system will be marginal.

It is therefore considered more practical and environmentally beneficial to further invest in the SUDs scheme, swales etc, the landscaping (ecology) strategies including the creation of the large new wetland area noted elsewhere within this document, and to couple this with improvements to the thermal performance of the buildings, each of which will provide the benefits generally offered by green roofs.

### 4.3.5 Below ground storage

The significant increase in impermeable area results in the requirement for significant storage volumes. Because of topography, it may not be possible to achieve the required storage volumes in above ground open water features. As a result, some underground storage, such as geocellular storage, may be required to supplement other surface water management features. Any underground storage should be lined in order to prevent the ingress of groundwater.

### 4.3.6 Wetland

A wetland feature is proposed to the north of the development. Some roads and landscape areas will drain to the Lin Brook via the wetland. Due to site levels, it will not possible to drain much of the main development to the wetland.

### 4.3.7 Storage swales

A number of deeper (800mm) swales are proposed to the vegetated slope between the development and the Lin Brook.

Flow control would be provided at each swale, with low flow passed forward towards the outfall to Lin Brook.

### 4.4 Preliminary Design

### 4.4.1 Climate Change

In accordance with Environment Agency requirements, an allowance of 30% increased peak rainfall intensity has been included within the design to account for potential climate change.

### 4.4.2 Design Proposals

It is proposed that surface water flows are restricted to the equivalent, undeveloped, greenfield runoff rates.

The Interim Code of Practice for Sustainable Drainage Systems (2004) recommends the use of the method set out in the Institute of Hydrology Report 124 *Flood estimation for small catchments* (1994) to calculate greenfield runoff rates. However, the previously designed scheme used the method set out in ADAS report 345, as this method takes into account the steeply sloping catchment at the development site.

The use of the ADAS method was discussed with the EA on 11<sup>th</sup> January 2010 (refer to Appendix D), who confirmed that this would be an acceptable method to calculate greenfield runoff rates.

Greenfield runoff calculations are included in Appendix B.

The preliminary design for the surface water drainage system is indicated on drawing C.960.SK.001. Contributing impermeable areas and significant surface water storage features are indicated on drawing C.960.SK.003.

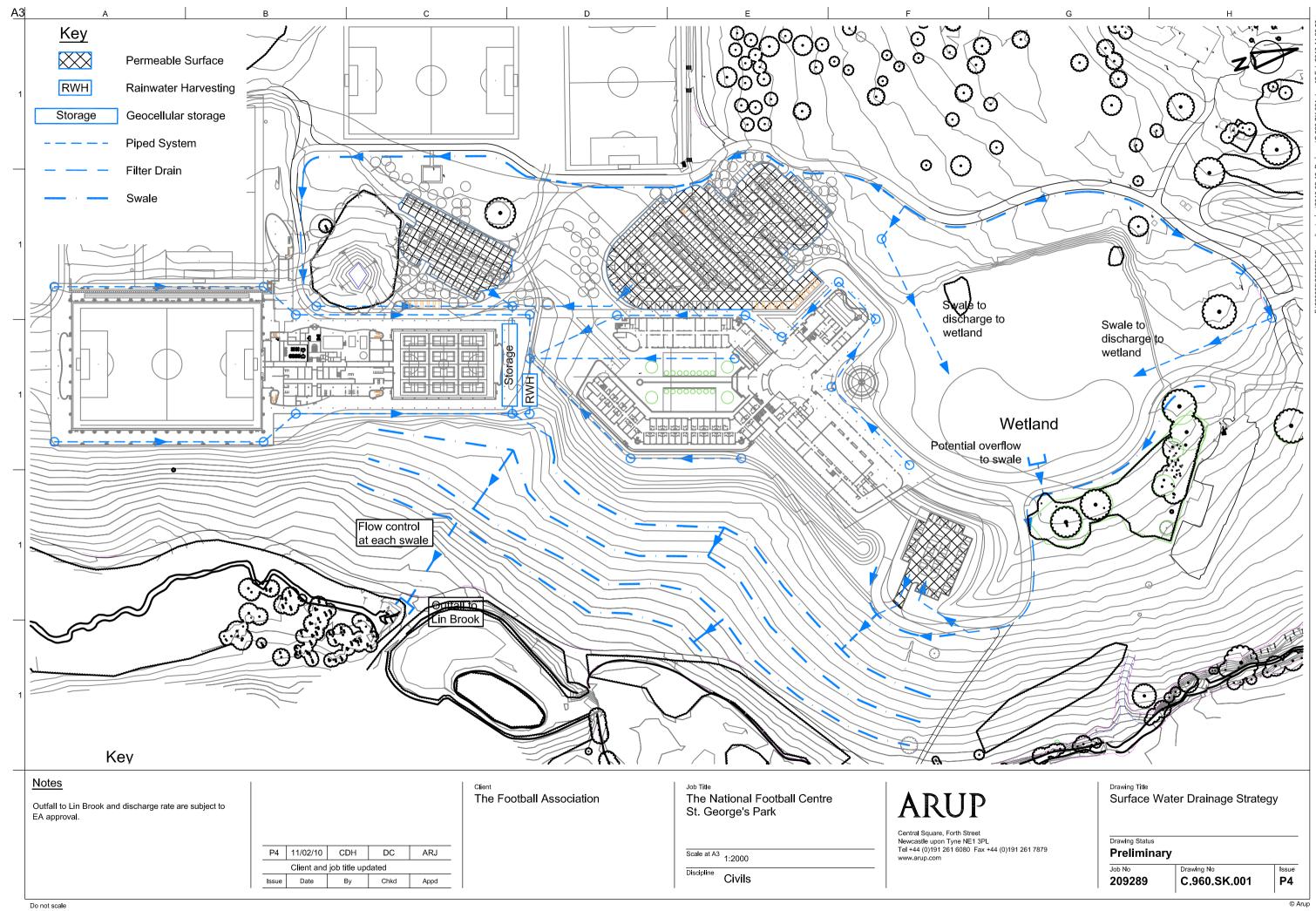
The drainage system has been modelled simplistically using the Source Control module within MicroDrainage WinDes. Design storms have been routed through storage features using the Cascading Ponds function.

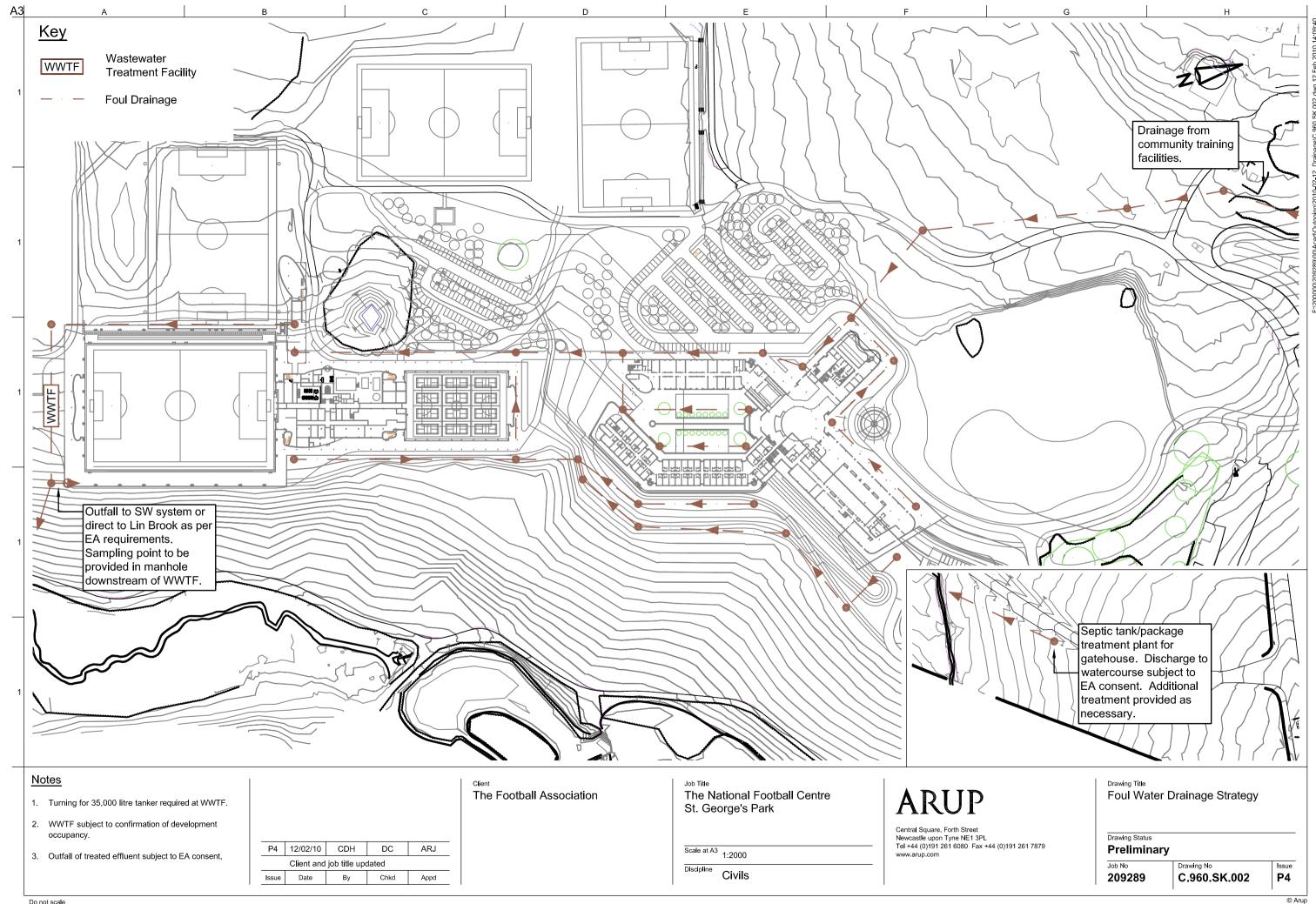
The design has been checked to ensure that the equivalent greenfield runoff rate has not been exceeded for both the <u>1 in 1 year</u> and the <u>1 in 100 year</u> critical storms.

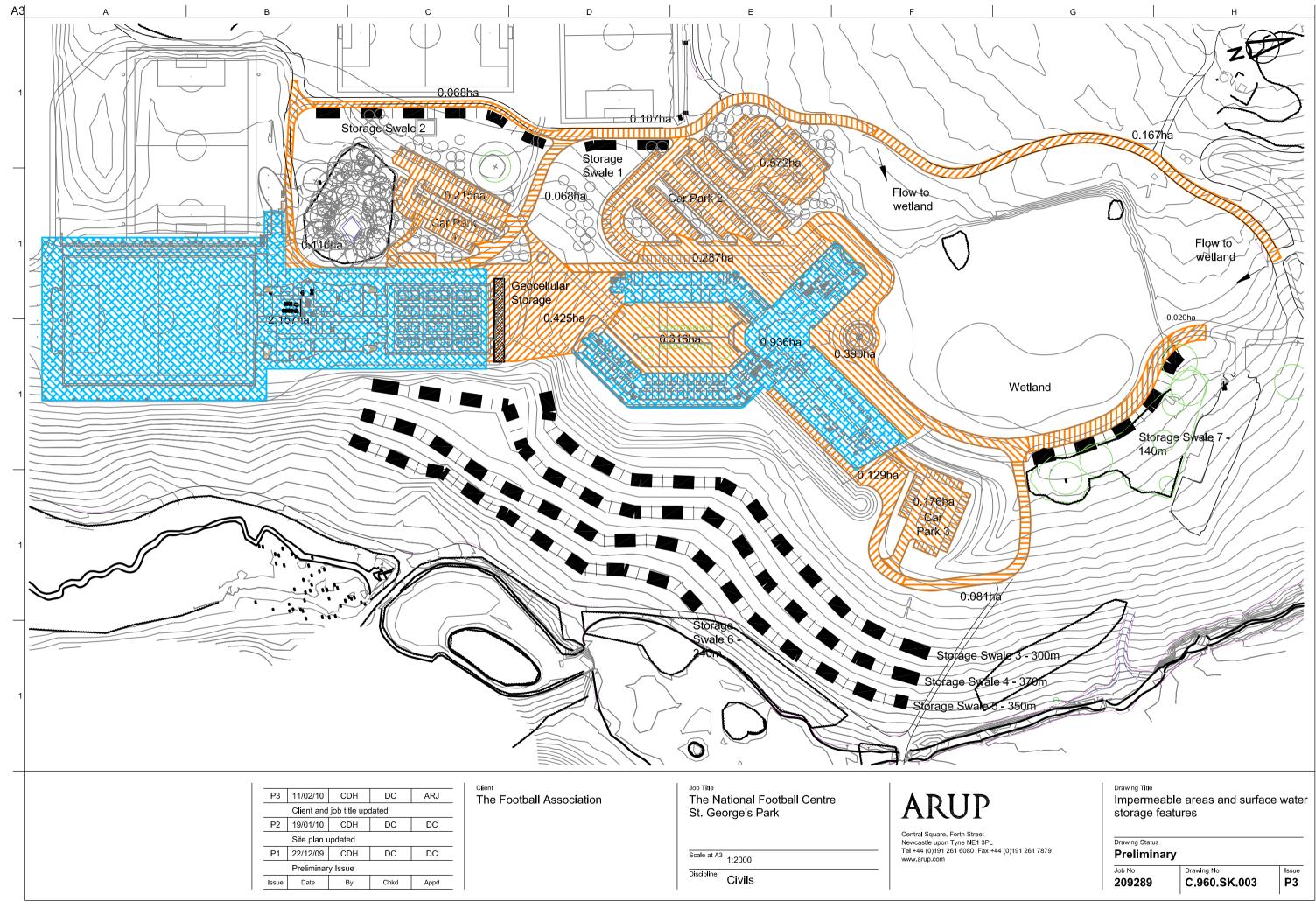
Because the surface water system has been modelled simplistically, further improvements in performance are expected in practice, due to the additional attenuating effects of filter drains, swales and permeable surfaces.

| Return Period | Pre-development<br>Greenfield Runoff<br>(I/s) | Post-development<br>runoff<br>(I/s) |
|---------------|-----------------------------------------------|-------------------------------------|
| 1 in 1 year   | 30.3                                          | 21.6                                |
| 1 in 100 year | 93.9                                          | 93.3                                |

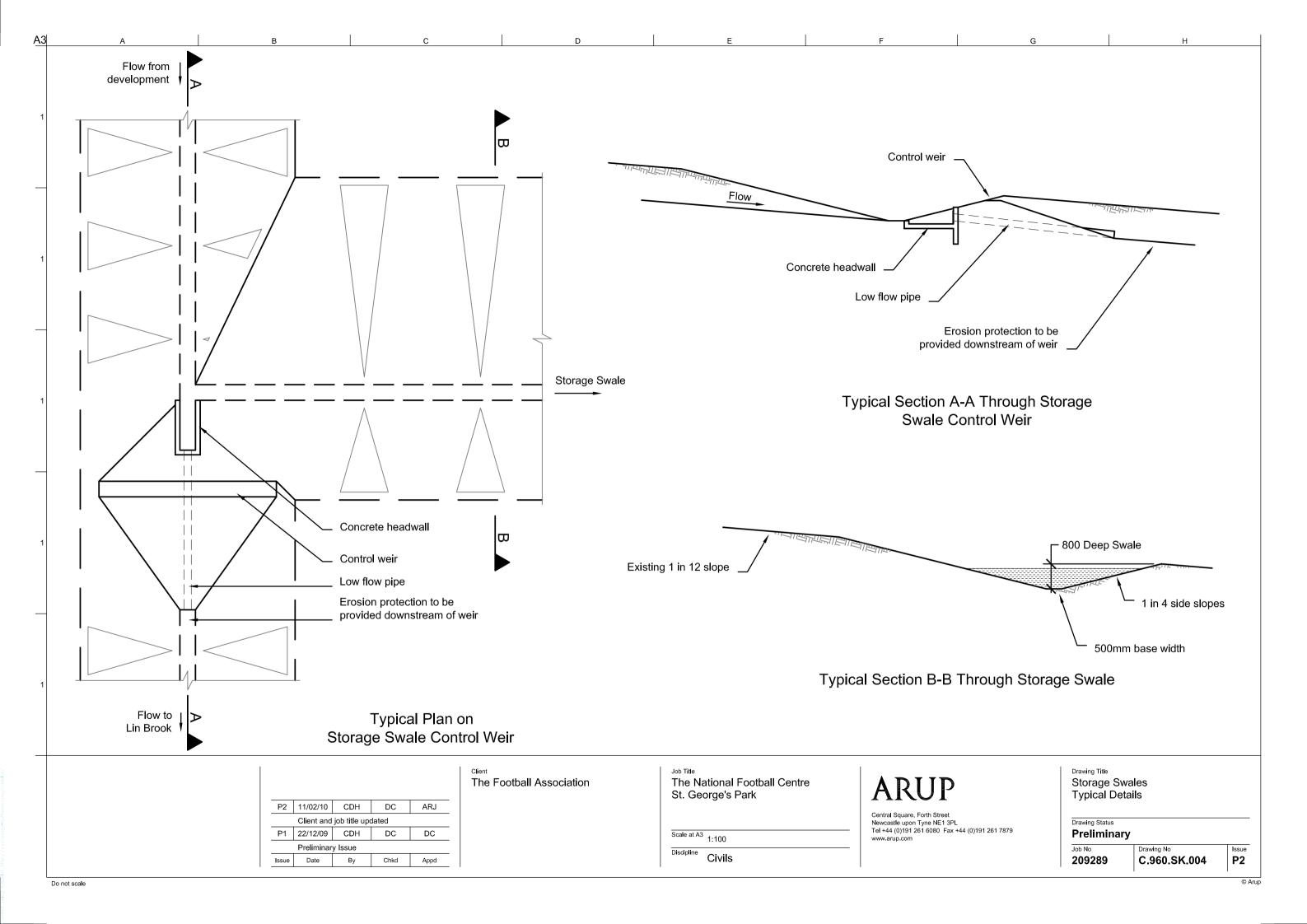
Preliminary design flows into the Lin Brook are as follows:

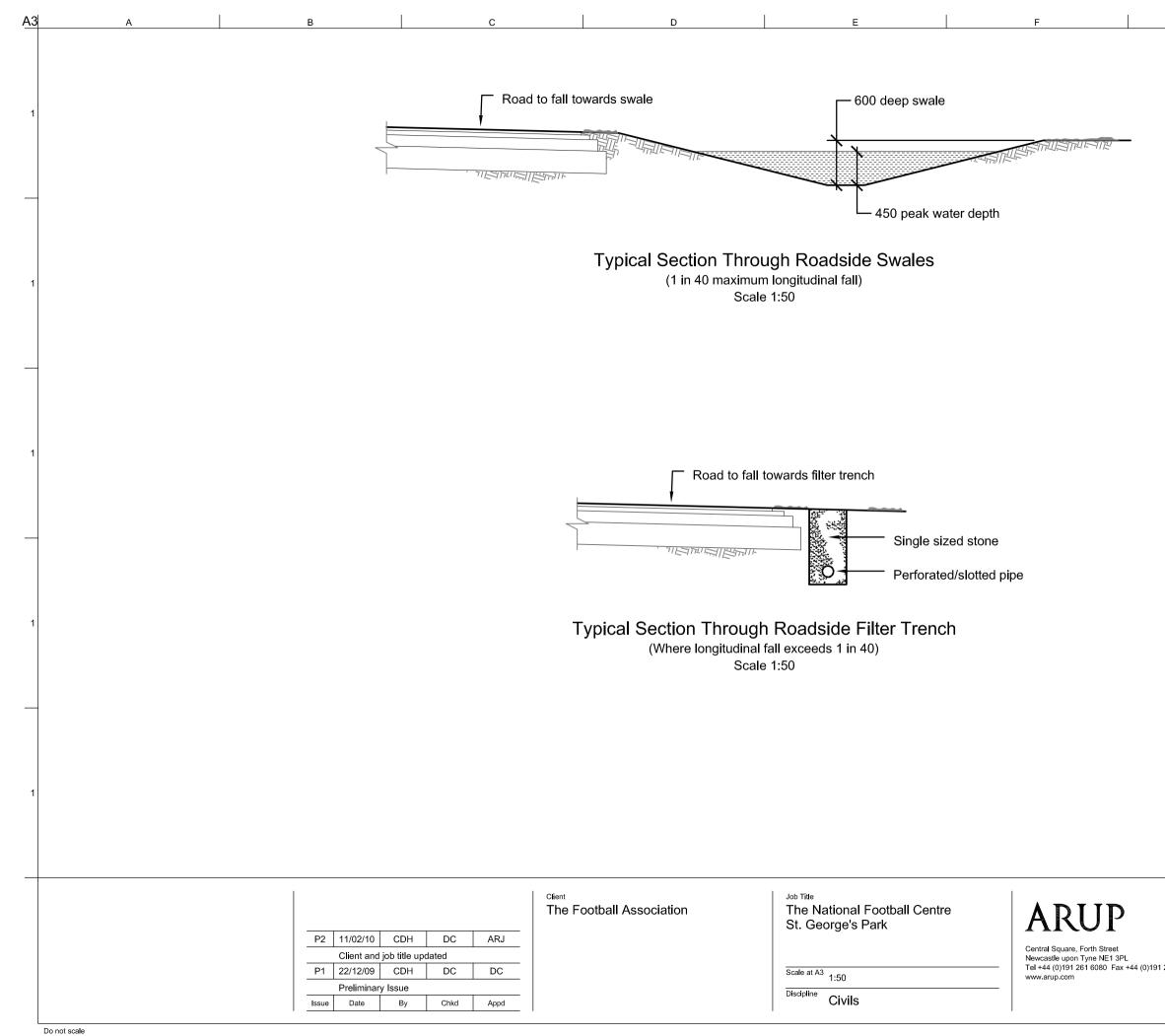

Simulation printouts from Source Control for the preliminary design are included in Appendix C.


The current proposals include approximately 5070m<sup>3</sup> of surface water storage for the critical 1 in 100 year storm, including an allowance of 30% increased peak rainfall intensity has been included within the design to account for potential climate change, split down as follows:


| Swales:                                | 4015m³             |
|----------------------------------------|--------------------|
| Underground Storage:                   | 590m³              |
| Storage beneath<br>permeable surfaces: | 464m³              |
| Total:                                 | 5070m <sup>3</sup> |

The above volumes are subject to change during detailed design.


## DRAWINGS



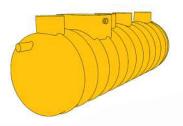





(200000/209289\00\Acad\Outgoing\2010-02-12\_Drainage\C 960.SK 003 dw






|          | Drawing Title<br>Roadside S<br>Typical De | Swales and Filter Tro<br>tails | enches      |
|----------|-------------------------------------------|--------------------------------|-------------|
| 261 7879 | Drawing Status<br>Prelimina               | ry                             |             |
|          | Job No<br>209289                          | Drawing No<br>C.960.SK.005     | Issue<br>P2 |

Appendix A

Wastewater Treatment Facility Preliminary Information







the conder **SAF range** of package sewage treatment plants techflo<sup>™</sup> SAF 60-600 - single stream techflo<sup>™</sup> SAF 700-1800 - multi stream

above or below ground installation granular or concrete backfill



# demand special treatment

Conder Environmental Solutions (Conder) has further developed its range of package sewage treatment plants utilising proven Submerged Aerated Filter (SAF) technology for optimum performance and dependability. Using reliable, cost effective and energy efficient blowers for aeration with an integral flow management system, the range is packaged for installation completely below ground. The range can be adapted to provide an above ground treatment solution.

In standard configuration the plants offer treatment to a 20mg/l BOD: 30mg/l SS effluent quality standard with options for 20, 10 or 5mg/l NH<sub>2</sub> effluent quality.

Designed in accordance with the British Water Code of Practice for Flows and Loads, the Conder range will serve a population range from 60-600PE as a single stream unit. Larger populations can be accommodated with multiple stream plants. The SAF technology utilised in the Conder Techflo range has been type tested in accordance with BSEN 12566-3.

### **PRODUCT RANGE**

**The Techflo 60-600** range is suitable for larger-scale commercial applications including leisure facilities, hotels, schools, offices and industrial situations.

For larger applications, Conder's Technical Solutions division offers a range of modular sewage treatment systems up to 1800PE, utilising SAF technology. This modular system includes flow balancing, primary settlement/sludge storage, SAF Biozone (BOD removal and nitrification) and humus settlement as discrete stages. This design flexibility means that we can offer a bespoke solution within a package



format. Please call our sales office for more information: 08702 640004. **Clereflo SAF 25-50** is the solution for housing developments and other smaller scale projects where access to mains drainage is not available. Typical applications include small communities or developments in rural areas.

The combination of features, benefits, high performance, reliability and quality assurance makes the Conder SAF range the product choice for 'off mains' drainage solutions.

### FEATURES AND BENEFITS

- Type tested in accordance with BSEN 12566-3
- Proven SAF technology with reliable performance
- Completely below-ground installation
- Low running cost air-blower
- Easy to install reduced costs
- Quiet, odourless operation
- · Compact unitank design with no below ground moving parts
- Deeper inverts available
- Option for pumped influent or effluent
- Effluent Standard: 20mg/I BOD; 30mg/I SS; 20-5mg/I NH<sub>3</sub>
- High Rate nitrification options available
- Plants suitable for installation with either granular or concrete backfill

### **PRODUCT SELECTOR**

All applications should be specified to comply with the British Water Code of Practice for Flows and Loads. Further advice and assistance is available from our experienced internal and external sales teams. Site visits and assessments are recommended to ensure the correct equipment is proposed for each application.

The correct plant should be selected to meet the requirements of the applicable discharge consent granted by the Environment Agency, SEPA or EHS (NI).

| PLANT           | DRY WEATHER<br>FLOW (DWF) | MAX LOAD PER DAY |        | MINIMUM<br>DESLUDGE |
|-----------------|---------------------------|------------------|--------|---------------------|
|                 | m <sup>3</sup> /d         | BOD kg           | NH3 kg | PERIOD              |
| Techflo SAF 60  | 12                        | 3.6              | 0.48   | 90                  |
| Techflo SAF 75  | 15                        | 4.5              | 0.6    | 90                  |
| Techflo SAF 100 | 20                        | 6                | 0.8    | 90                  |
| Techflo SAF 125 | 25                        | 7.5              | 1.0    | 90                  |
| Techflo SAF 150 | 30                        | 9                | 1.2    | 90                  |
| Techflo SAF 200 | 40                        | 12               | 1.6    | 60                  |
| Techflo SAF 250 | 50                        | 15               | 2.0    | 60                  |
| Techflo SAF 300 | 60                        | 18               | 2.4    | 60                  |
| Techflo SAF 350 | 70                        | 21               | 2.8    | 60                  |
| Techflo SAF 400 | 80                        | 24               | 3.2    | 60                  |
| Techflo SAF 500 | 100                       | 30               | 4.0    | 60                  |
| Techflo SAF 600 | 120                       | 36               | 4.8    | 60                  |

\* Desludge period is at maximum loading, plants not loaded to

maximum will have longer desludge periods \*\*Different desludge periods can be accommodated,

please contact us for further information

## process and plant description

The Conder SAF 60-600 treatment plant comprises a single tank (unitank) or two tanks (semi-modular), or three tanks (modular). The tank(s) form three treatment stages: primary settlement, biological treatment (biozone) and humus settlement. Flow through all of the treatment stages from inlet to outlet is by gravity.

The incoming wastewater is received in the primary settlement zone. The purpose of the zone being twofold; to remove the majority of the incoming settleable material reducing the biological load passing forward to the biozone; and to store this material (primary sludge) along with humus sludge (returned from the humus zone) until it is periodically removed by desludging. The primary zone has two compartments to ensure efficient operation. The primary zone also incorporates a flow balancing facility where, periodically, the liquid level is lowered by an airlift transferring some of the contents forward into the biozone. This creates a storage volume which is filled before gravity flow into the biozone continues. Flow from the primary zone passes forward into the biozone. The biozone contains a number of sections (depending on the plant size and required discharge consent), which contain structured plastic media. The high surface area of the media encourages growth of the bacteria and other organisms (biomass) which treat the wastewater. Air, by means of above ground blower(s), is introduced below the media. The air fulfils two functions: supplying the oxygen required by the biomass; scouring the media, removing excess biomass.

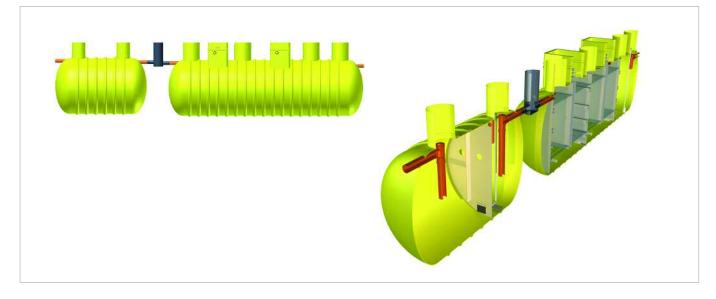
The combination of treated wastewater and excess humus solids is transferred forward into the humus settlement zone. In this zone the humus solids settle to the bottom of the tank with the treated water (final effluent) being discharged at the top. The humus solids (humus sludge) which settle to the bottom of the tank are transferred to the primary zone by means of an airlift pump, where they are ultimately removed by the desludging operation.

### **PLANT KIOSK**

All Conder Techflo SAF plants are provided with a painted mild steel plant kiosk. This kiosk houses the aeration blowers, timer valve(s) and the electrical control panel.

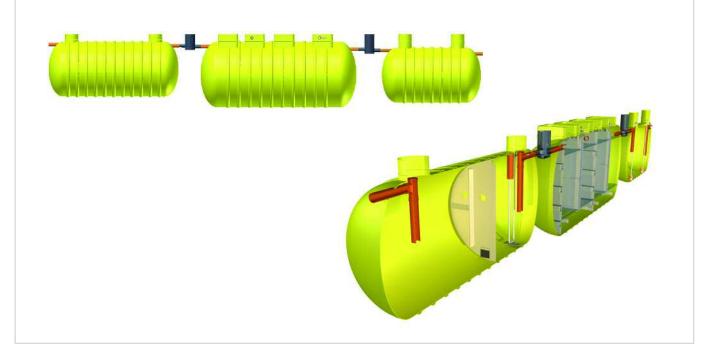
The side channel blower(s) fitted within the kiosk vary in capacity and utilise either single of three phase electrical supply. Please contact us for further information.

The electrical control panel provides all of the required electrical equipment for the starting, running and monitoring of the plant. The control panel can be adapted to accommodate other mechanical / electrical devices associated with the plant, for example a final effluent pump station.


The kiosk is fitted with an alarm beacon as standard and can be provided with telemetry for remote plant monitoring.



Zone (s)


### CONDER TECHFLO SAF UNITANK TREATMENT PLANT

# semi modular & modular



## PRIMARY SETTLEMENT TANK AND COMBINED BIOZONE AND HUMUS SETTLEMENT TANK

## PRIMARY SETTLEMENT TANK, BIOZONE TANK AND HUMUS SETTLEMENT TANK



- \* The system layout for semi-modular and modular plants is flexible, i.e. tanks can be installed in series or in parallel.
- \*\* Above ground options also available.

# specification and installation

### **INSTALLATION**

Conder advises the use of a suitably experienced and qualified installation company to install any of its products. For suggested installers in your area, please contact our sales team on: 08702 640004. Care should be taken to fully assess the site ground conditions prior to commencement of installation. Detailed installation guidelines are provided for each product. All electrical work should be carried out in accordance with current regulations (for example NIC EIC / building regulations). All Conder SAF plants are manufactured to allow installation with either granular or concrete backfill, client's choice. Granular backfill will provide significant reductions in installation costs.

### **TECHFLO SAF PLANT SELECTION TABLE**

| PLANT           | DISCHARGE AMMONIA LEVEL (mg/l) |              |              |  |
|-----------------|--------------------------------|--------------|--------------|--|
|                 | 20                             | 10           | 5            |  |
| Techflo SAF 60  | Unitank                        | Unitank      | Unitank      |  |
| Techflo SAF 75  | Unitank                        | Unitank      | Unitank      |  |
| Techflo SAF 100 | Unitank                        | Unitank      | Unitank      |  |
| Techflo SAF 125 | Unitank                        | Unitank      | Semi Modular |  |
| Techflo SAF150  | Unitank                        | Unitank      | Semi Modular |  |
| Techflo SAF 200 | Unitank                        | Semi Modular | Semi Modular |  |
| Techflo SAF 250 | Semi Modular                   | Modular      | Modular      |  |
| Techflo SAF 300 | Semi Modular                   | Modular      | Modular      |  |
| Techflo SAF 350 | Semi Modular                   | Modular      | Modular      |  |
| Techflo SAF 400 | Modular                        | Modular      | Modular      |  |
| Techflo SAF 500 | Modular                        | Modular      | on request   |  |
| Techflo SAF 600 | Modular                        | on request   | on request   |  |

\* Larger applications, or those which are outside the scope of the above table are available, please contact us for details.

### SERVICE

Conder recommends that a maintenance agreement is taken out to service the plant as indicated in the Environment Agency Guideline PPG4. Desludging of the Primary Tank should take place between 60-365 days depending on the size of the plant and the plant loading. Through a nationwide network of British Water accredited engineers, Conder's service partner Pims Service, offers a comprehensive range of services including commissioning and ongoing service contracts.

Hire/lease and buy back options available.



### **OPTIONAL EXTRAS**

- Client specified Control Panel e.g. Form 4
- Standby Blower
- Client specified Control Kiosk
- Access Shafts (for deeper pipework inverts)
- Sample Chamber
- Phosphate Reduction
- UV Disinfection
- Scada/Telenetry
- GMS Dial Out
- Tertiary Treatment
- Heavy-duty Covers
- Acoustically lagged controlled Kiosk





overground option

# Techflo SAF Standard Plant Sizing Table

### **UNITANK SYSTEMS**

|   | PLANT              | PRIMARY SETTLEMENT ZONE /<br>BIOZONE / HUMUS ZONE TANK |                       |  |
|---|--------------------|--------------------------------------------------------|-----------------------|--|
|   |                    | TANK DIAMETER<br>(m)                                   | OVERALL LENGTH<br>(m) |  |
|   | Techflo SAF 60N20  | 2.5                                                    | 5.220                 |  |
|   | Techflo SAF 60N10  | 2.5                                                    | 6.030                 |  |
|   | Techflo SAF 60N05  | 2.5                                                    | 6.808                 |  |
|   | Techflo SAF 75N20  | 2.5                                                    | 5.920                 |  |
|   | Techflo SAF 75N10  | 2.5                                                    | 7.108                 |  |
| F | Techflo SAF 75N05  | 2.5                                                    | 7.678                 |  |
| Ξ | Techflo SAF 100N20 | 2.5                                                    | 7.830                 |  |
| Б | Techflo SAF 100N10 | 2.5                                                    | 8.880                 |  |
|   | Techflo SAF 100N05 | 2.5                                                    | 9.918                 |  |
|   | Techflo SAF 125N20 | 2.5                                                    | 9.550                 |  |
|   | Techflo SAF 125N10 | 2.5                                                    | 11.175                |  |
|   | Techflo SAF150N20  | 2.5                                                    | 11.215                |  |
|   | Techflo SAF150N10  | 2.5                                                    | 12.880                |  |
|   | Techflo SAF 200N20 | 2.5                                                    | 13.365                |  |

### SEMI-MODILI AR-TWO TANK SYSTEMS

MODULAR

| SEIVII-MODULAR-TWO TANK STSTEMS |                        |                       |                           |                       |  |
|---------------------------------|------------------------|-----------------------|---------------------------|-----------------------|--|
|                                 | PRIMARY SETT           | LEMENT TANK           | BIOZONE / HUMUS ZONE TANK |                       |  |
|                                 | TANK & DIAMETER<br>(m) | OVERALL LENGTH<br>(m) | TANK DIAMETER<br>(m)      | OVERALL LENGTH<br>(m) |  |
| Techflo SAF 125N05              | PT18-2.5               | 4.118                 | 2.5                       | 8.780                 |  |
| Techflo SAF 150N05              | PT22-2.5               | 4.921                 | 2.5                       | 10.208                |  |
| Techflo SAF 200N10              | PT22-2.5               | 4.921                 | 2.5                       | 11.108                |  |
| Techflo SAF 200N05              | PT22-2.5               | 4.921                 | 3.0                       | 10.450                |  |
| Techflo SAF 250N20              | PT27-2.5               | 5.950                 | 2.5                       | 10.800                |  |
| Techflo SAF 300N20              | PT32-2.5               | 6.970                 | 2.5                       | 12.684                |  |
| Techflo SAF 350N20              | PT40-2.5               | 8.598                 | 2.5                       | 14.384                |  |

### **MODULAR-THREE TANK SYSTEMS**

|                    | PRIMARY SETTLEMENT TANK |                       | BIOZONE TANK         |                       | HUMUS SETTLEMENT TANK  |                       |
|--------------------|-------------------------|-----------------------|----------------------|-----------------------|------------------------|-----------------------|
|                    | TANK & DIAMETER<br>(m)  | OVERALL LENGTH<br>(m) | TANK DIAMETER<br>(m) | OVERALL LENGTH<br>(m) | TANK & DIAMETER<br>(m) | OVERALL LENGTH<br>(m) |
| Techflo SAF 250N10 | PT27-2.5                | 5.950                 | 3.0                  | 7.135                 | HM20-2.5               | 4.524                 |
| Techflo SAF 250N05 | PT27-2.5                | 5.950                 | 3.0                  | 8.850                 | HM20-2.5               | 4.524                 |
| Techflo SAF 300N10 | PT32-2.5                | 6.970                 | 3.0                  | 8.250                 | HM24-2.5               | 5.430                 |
| Techflo SAF 300N05 | PT32-2.5                | 6.970                 | 3.0                  | 10.210                | HM24-2.5               | 5.430                 |
| Techflo SAF 350N10 | PT40-2.5                | 8.598                 | 3.0                  | 9.150                 | HM27-2.5               | 5.950                 |
| Techflo SAF 350N05 | PT40-2.5                | 8.598                 | 3.0                  | 12.340                | HM27-2.5               | 5.950                 |
| Techflo SAF 400N20 | PT45-2.5                | 9.616                 | 3.0                  | 7.135                 | HM32-2.5               | 6.970                 |
| Techflo SAF 400N10 | PT45-2.5                | 9.616                 | 3.0                  | 10.210                | HM32-2.5               | 6.970                 |
| Techflo SAF 400N05 | PT45-2.5                | 9.616                 | 3.0                  | 13.328                | HM32-2.5               | 6.970                 |
| Techflo SAF 500N20 | PT54-2.5                | 11.450                | 3.0                  | 8.850                 | HM45-2.5               | 9.616                 |
| Techflo SAF 500N10 | PT54-2.5                | 11.450                | 3.0                  | 12.340                | HM45-2.5               | 9.616                 |
| Techflo SAF 600N20 | PT65-2.5                | 13.690                | 3.0                  | 10.210                | HM45-2.5               | 11.450                |

\* Standard plant inlet invert depth is 1m. Deeper inlet options are available. The tank sizes detailed in the above table refer to our standard plant configurations. We can offer bespoke solutions to suit different plant configurations and footprint requirements, for both below ground and above ground plants. If you have particular plant requirements please contact us for further details.

## conderproducts.com

# about conder environmental solutions

Protecting the water environment has been the mission of Conder Environmental Solutions, since it was established in the early 1970s. The business is organised into specialist divisions: Conder Products, Conder Technical Solutions, Conder Pumping Solutions. Our full capability extends beyond our successful range of 'sealed-design' commodity products, to providing expert consultancy and design for hi-specification bespoke packages across all areas of wastewater pollution control. Conder works closely with engineers, architects, specifiers, developers and self-builders. Providing support from detailed site surveys, plant selection, full technical proposals and liaison with regulatory bodies where necessary, we will ensure that our client achieves the most environmentally sound and cost-effective solution.

### **CONDER PRODUCTS**

Our specialist commodity division offers a portfolio of products ranging from oil/water separators and small sewage treatment plant, to pumping stations and attenuation or storm water balancing tanks. Our Clereflo range of small-scale domestic sewage treatment plants serve 6-50 population equivalents, utilising either Activated Sludge Plant (ASP) or Submerged Aerated Filter (SAF) technology. Highly price-competitive, with minimal running costs, the Clereflo range is the low energy solution for applications where access to mains drainage is not available.

### **CONDER TECHNICAL SOLUTIONS**

The capability of Conder's Technical Solutions division illustrates the breadth of the company's expertise and has established Conder as the authority in hi-specification projects. As a solutions provider our expertise extends across a product range that includes SAF technology unitank and modular sewage treatment systems up to 1800pe, Membrane BioReactor package sewage treatment up to 5000pe, attenuation, engineered vessels and other specialist tanks.

### **CONDER PUMPING SOLUTIONS**

We offer a range of water and wastewater pumping solutions for domestic, commercial and industrial applications from off the shelf packages, through to custom-built pumping solutions.

#### SERVICE

Products installed to protect the environment must be maintained and serviced regularly to ensure that they continue to operate efficiently and effectively. Failure to do this will undoubtedly lead to pollution of the water environment, which is an offence and may result in prosecution. Through a nationwide network of British Water accredited engineers, Pims Service, Conder's service partner, offers a full service and technical package which can include product support, commissioning, waste management and ongoing service and maintenance programmes.

# let us make your environment a better place to be... demand special treatment




ASP 6-20pe Package Sewage Treatment Plant



NSAF 25-50pe



Techflo SAF 60-600pe single-stream and multi-stream up to 1800pe



MBR Membrane Technology Package Sewage Treatment Systems (up to 5000pe)



General Underground Storage Tanks



For product enquiries, specification advice, project assessments or further information, please contact the Conder team on:



t: 08702 640004 f: 08702 640005 e: sales@conderproducts.com www.conderproducts.com Conder Solutions Ltd, 2 Whitehouse Way, South West Industrial Estate, Peterlee, Co Durham SR8 2RA

For nationwide service enquiries please contact:



Pims (Services) Ltd t: 0870 405 0902 f: 01252 516404 e: sales@pimsgroup.co.uk www.pimsgroup.co.uk

#### A member of









Conder Solutions Ltd is part of the EPS group of companies. We reserve the right to alter specification without prior notice.

TM – Techflo is a registered Trade Mark





Attenuation & Storm Water Balancing

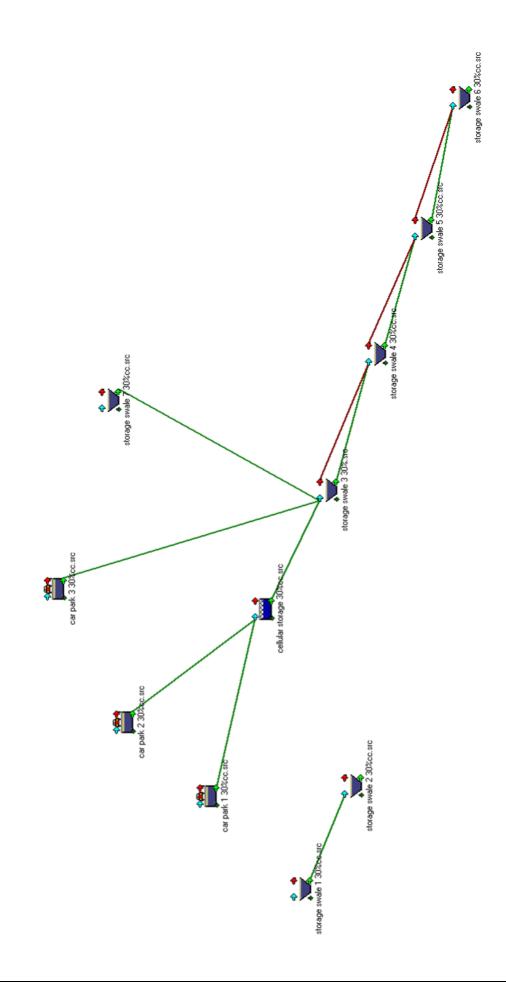


Class 1&2 Bypass & Full Retention oil/water separators



Package Pump Stations

### Plus:


Double Wall Tanks Fuel Tanks Cesspools & Septics Rainwater Harvesting Systems Grease/Oil Separators Bucket Lift Elevators Screenpack CSOs ConderCell Modular Storage Above Ground Engineered Vessels Sprinkler Tanks

Appendix B Greenfield Runoff Calculations

| Ove Arup & Partners International |              |                     | Page 1    |  |
|-----------------------------------|--------------|---------------------|-----------|--|
| The Arup Campus                   | NFC          |                     |           |  |
| Blyth Gate                        |              |                     |           |  |
| Solihull B90 8AE                  |              |                     |           |  |
| Date 15/12/09                     | Designed By  | CDH                 |           |  |
| File                              | Checked By   |                     |           |  |
| Micro Drainage                    | Source Cont  | col W.11.4 net      |           |  |
| ADAS 345                          |              |                     |           |  |
|                                   | In           | put                 |           |  |
| Area (Ha)                         | 6.144        | Soil Type Factor (S | S+) 0 800 |  |
| Length (m)                        | 500.000      | Paved Area (        |           |  |
| Average Slope (1:                 |              |                     |           |  |
| AAR (mm)                          | 700          | Region Numb         |           |  |
|                                   | Results      | 1/s                 |           |  |
| c                                 | 0 - Peak Flo | od Flow 30.3        |           |  |
| ×                                 |              | otal Q0 30.3        |           |  |
|                                   |              |                     |           |  |
|                                   |              | QBAR 36.5           |           |  |
|                                   | 0            |                     |           |  |
|                                   | Q            | 1 year 30.3         |           |  |
|                                   | Q            | 1 year 30.3         |           |  |
|                                   |              | 2 years 32.8        |           |  |
|                                   |              | 5 years 44.9        |           |  |
|                                   |              | 0 years 54.5        |           |  |
|                                   |              | 0 years 65.0        |           |  |
|                                   |              | 5 years 68.6        |           |  |
|                                   |              | 0 years 71.6        |           |  |
|                                   |              | 0 years 80.5        |           |  |
|                                   |              | 0 years 93.9        |           |  |
|                                   |              | 0 years 110.4       |           |  |
|                                   |              | 0 years 115.8       |           |  |
|                                   | Q 100        | 0 years 152.0       |           |  |
|                                   |              |                     |           |  |
|                                   |              |                     |           |  |
|                                   |              |                     |           |  |
|                                   |              |                     |           |  |

Appendix C

Surface Water Drainage - Preliminary Design Calculations



# **1 in 1 year Simulations**

#### Cascade Summary of Results for storage swale 1 30%cc.src

| Upstream   | Outflow To | Overflow To |
|------------|------------|-------------|
| Structures | OUCTION 10 | overiiow io |

(None) storage swale 2 30%cc.src (None)

Half Drain Time : 7 minutes

| Dura  | orm<br>Ition<br>.ns) | Maximum<br>Control<br>(l/s) | Maximum<br>Filtration<br>(l/s) | Maximum<br>Outflow<br>(l/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m) | Maximum<br>Volume<br>(m <sup>3</sup> ) | Status |
|-------|----------------------|-----------------------------|--------------------------------|-----------------------------|----------------------------------|-------------------------|----------------------------------------|--------|
| 15    | Summer               | 6.3                         | 0.0                            | 6.3                         | 116.7497                         | 0.2497                  | 4.2                                    | ΟK     |
| 30    | Summer               | 6.3                         | 0.0                            | 6.3                         | 116.7503                         | 0.2502                  | 4.2                                    | ΟK     |
| 60    | Summer               | 6.1                         | 0.0                            | 6.1                         | 116.7318                         | 0.2317                  | 3.5                                    | ОК     |
| 120   | Summer               | 5.6                         | 0.0                            | 5.6                         | 116.6882                         | 0.1882                  | 2.2                                    | ΟK     |
| 180   | Summer               | 5.2                         | 0.0                            | 5.2                         | 116.6507                         | 0.1507                  | 1.4                                    | ОК     |
| 240   | Summer               | 4.8                         | 0.0                            | 4.8                         | 116.6237                         | 0.1238                  | 0.9                                    | ОК     |
| 360   | Summer               | 3.9                         | 0.0                            | 3.9                         | 116.6028                         | 0.1028                  | 0.6                                    | ΟK     |
| 480   | Summer               | 3.2                         | 0.0                            | 3.2                         | 116.5908                         | 0.0908                  | 0.5                                    | ОК     |
| 600   | Summer               | 2.7                         | 0.0                            | 2.7                         | 116.5827                         | 0.0828                  | 0.4                                    | ОК     |
| 720   | Summer               | 2.4                         | 0.0                            | 2.4                         | 116.5762                         | 0.0763                  | 0.3                                    | ОК     |
| 960   | Summer               | 2.0                         | 0.0                            | 2.0                         | 116.5658                         | 0.0657                  | 0.2                                    | ΟK     |
| 1440  | Summer               | 1.5                         | 0.0                            | 1.5                         | 116.5553                         | 0.0552                  | 0.2                                    | ΟK     |
| 2160  | Summer               | 1.1                         | 0.0                            | 1.1                         | 116.5488                         | 0.0487                  | 0.1                                    | ΟK     |
| 2880  | Summer               | 0.9                         | 0.0                            | 0.9                         | 116.5443                         | 0.0442                  | 0.1                                    | ΟK     |
| 4320  | Summer               | 0.7                         | 0.0                            | 0.7                         | 116.5372                         | 0.0372                  | 0.1                                    | ΟK     |
| 5760  | Summer               | 0.5                         | 0.0                            | 0.5                         | 116.5338                         | 0.0337                  | 0.1                                    | ΟK     |
| 7200  | Summer               | 0.5                         | 0.0                            | 0.5                         | 116.5313                         | 0.0312                  | 0.1                                    | ΟK     |
| 8640  | Summer               | 0.4                         | 0.0                            | 0.4                         | 116.5293                         | 0.0292                  | 0.0                                    | ΟK     |
| 10080 | Summer               | 0.4                         | 0.0                            | 0.4                         | 116.5273                         | 0.0273                  | 0.0                                    | ΟK     |
| 15    | Winter               | 6.4                         | 0.0                            | 6.4                         | 116.7653                         | 0.2652                  | 4.8                                    | ΟK     |
| 30    | Winter               | 6.4                         | 0.0                            | 6.4                         | 116.7612                         | 0.2612                  | 4.6                                    | ΟK     |
| 60    | Winter               | 6.1                         | 0.0                            | 6.1                         | 116.7298                         | 0.2297                  | 3.4                                    | ΟK     |
| 120   | Winter               | 5.3                         | 0.0                            | 5.3                         | 116.6608                         | 0.1607                  | 1.6                                    | ΟK     |
| 180   | Winter               | 4.6                         | 0.0                            | 4.6                         | 116.6148                         | 0.1148                  | 0.8                                    | O K    |
| 240   | Winter               | 3.8                         | 0.0                            | 3.8                         | 116.6012                         | 0.1013                  | 0.6                                    | ΟK     |
| 360   | Winter               | 2.9                         | 0.0                            | 2.9                         | 116.5853                         | 0.0853                  | 0.4                                    | ΟK     |
| 480   | Winter               | 2.3                         | 0.0                            | 2.3                         | 116.5748                         | 0.0748                  | 0.3                                    | ΟK     |

| 15       Summer       39.03       13         30       Summer       25.41       21         60       Summer       16.08       38         120       Summer       9.97       68         180       Summer       7.50       98         240       Summer       6.13       126         360       Summer       4.58       184         480       Summer       3.72       246         600       Summer       3.16       306         720       Summer       2.76       366         960       Summer       1.67       722         2160       Summer       1.67       722         2160       Summer       1.61       1424         4320       Summer       0.75       2196         5760       Summer       0.61       2920         7200       Summer       0.45       4344         10080       Summer       0.40       5064         15       Winter       39.03       14         30       Winter       25.41       23         60       Winter       16.08       40         120       Winter | Storm<br>Duration<br>(mins)                                                                                                                                  |                                                                                                                                                                                  | Rain<br>(mm/hr)                                                                                                                                                                                                 | Time-Peak<br>(mins)                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 480 Winter 3.72 246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30<br>60<br>120<br>180<br>240<br>360<br>720<br>960<br>1440<br>2160<br>2880<br>4320<br>5760<br>7200<br>8640<br>10080<br>15<br>30<br>60<br>120<br>8640<br>1080 | Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Winter<br>Winter<br>Winter<br>Winter<br>Winter<br>Winter | $\begin{array}{c} 25.41\\ 16.08\\ 9.97\\ 7.50\\ 6.13\\ 4.58\\ 3.72\\ 3.16\\ 2.76\\ 2.24\\ 1.67\\ 1.24\\ 1.01\\ 0.75\\ 0.61\\ 0.52\\ 0.45\\ 0.40\\ 39.03\\ 25.41\\ 16.08\\ 9.97\\ 7.50\\ 6.13\\ 4.58\end{array}$ | 21<br>38<br>68<br>98<br>126<br>184<br>246<br>306<br>366<br>482<br>722<br>1084<br>1422<br>2920<br>3544<br>4344<br>5064<br>14<br>23<br>40<br>70<br>96<br>126<br>186 |

| Ove Arup & Partners Intern | ational Ltd               | Page 2 |
|----------------------------|---------------------------|--------|
| The Arup Campus            | NFC                       |        |
| Blyth Gate                 | Storage Swale 1           |        |
| Solihull B90 8AE           |                           |        |
| Date 14/01/10              | Designed By CDH           |        |
| File NFC 30%CC.cas         | Checked By                |        |
| Micro Drainage             | Source Control W.11.4 net |        |

# Cascade Summary of Results for storage swale 1 30%cc.src

| Dura  | orm<br>tion<br>.ns) | Maximum<br>Control<br>(l/s) | Maximum<br>Filtration<br>(1/s) | Maximum<br>Outflow<br>(l/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m) | Maximum<br>Volume<br>(m³) | Status |
|-------|---------------------|-----------------------------|--------------------------------|-----------------------------|----------------------------------|-------------------------|---------------------------|--------|
| 600   | Winter              | 2.0                         | 0.0                            | 2.0                         | 116.5667                         | 0.0668                  | 0.2                       | ΟK     |
| 720   | Winter              | 1.7                         | 0.0                            | 1.7                         | 116.5608                         | 0.0607                  | 0.2                       | ОК     |
| 960   | Winter              | 1.4                         | 0.0                            | 1.4                         | 116.5547                         | 0.0547                  | 0.2                       | ОК     |
| 1440  | Winter              | 1.1                         | 0.0                            | 1.1                         | 116.5482                         | 0.0482                  | 0.1                       | ΟK     |
| 2160  | Winter              | 0.8                         | 0.0                            | 0.8                         | 116.5413                         | 0.0412                  | 0.1                       | ОК     |
| 2880  | Winter              | 0.6                         | 0.0                            | 0.6                         | 116.5368                         | 0.0367                  | 0.1                       | ОК     |
| 4320  | Winter              | 0.5                         | 0.0                            | 0.5                         | 116.5318                         | 0.0317                  | 0.1                       | ΟK     |
| 5760  | Winter              | 0.4                         | 0.0                            | 0.4                         | 116.5287                         | 0.0287                  | 0.0                       | ОК     |
| 7200  | Winter              | 0.3                         | 0.0                            | 0.3                         | 116.5263                         | 0.0262                  | 0.0                       | ОК     |
| 8640  | Winter              | 0.3                         | 0.0                            | 0.3                         | 116.5247                         | 0.0247                  | 0.0                       | ΟK     |
| 10080 | Winter              | 0.3                         | 0.0                            | 0.3                         | 116.5232                         | 0.0232                  | 0.0                       | 0 K    |

| Storm<br>Duration<br>(mins) |        | Rain<br>(mm/hr) | Time-Peak<br>(mins) |
|-----------------------------|--------|-----------------|---------------------|
| 600                         | Winter | 3.16            | 306                 |
| 720                         | Winter | 2.76            | 366                 |
| 960                         | Winter | 2.24            | 476                 |
| 1440                        | Winter | 1.67            | 740                 |
| 2160                        | Winter | 1.24            | 1084                |
| 2880                        | Winter | 1.01            | 1456                |
| 4320                        | Winter | 0.75            | 2136                |
| 5760                        | Winter | 0.61            | 2976                |
| 7200                        | Winter | 0.52            | 3720                |
| 8640                        | Winter | 0.45            | 4328                |
| 10080                       | Winter | 0.40            | 5032                |

| Ove Arup & Partners Internationa | l Ltd                     | Page 3 |
|----------------------------------|---------------------------|--------|
| The Arup Campus                  | NFC                       |        |
| Blyth Gate                       | Storage Swale 1           |        |
| Solihull B90 8AE                 |                           |        |
| Date 14/01/10                    | Designed By CDH           |        |
| File NFC 30%CC.cas               | Checked By                |        |
| Micro Drainage                   | Source Control W.11.4 net |        |

### Cascade Rainfall Details for storage swale 1 30%cc.src

| Region                | ENG+WAL | Cv (Summer)           | 0.750 | Summer Storms    | Yes |
|-----------------------|---------|-----------------------|-------|------------------|-----|
| Return Period (years) | 1       | Cv (Winter)           | 0.840 | Winter Storms    | Yes |
| M5-60 (mm)            | 19.400  | Shortest Storm (mins) | 15    | Climate Change % | +30 |
| Ratio-R               | 0.400   | Longest Storm (mins)  | 10080 |                  |     |

Time / Area Diagram

Total Area (ha) = 0.107

| Time  | (mins) | Area |
|-------|--------|------|
| from: | to:    | (ha) |

0 4 0.107

| Ove Arup & Partners Internation | al Ltd                    | Page 4 |
|---------------------------------|---------------------------|--------|
| The Arup Campus                 | NFC                       |        |
| Blyth Gate                      | Storage Swale 1           |        |
| Solihull B90 8AE                |                           |        |
| Date 14/01/10                   | Designed By CDH           |        |
| File NFC 30%CC.cas              | Checked By                |        |
| Micro Drainage                  | Source Control W.11.4 net |        |

# Cascade Storage Controls for storage swale 1 30%cc.src

#### Swale Details

| Infil Coef - Base (m/hr)  | 0.000000 | Length (m)       | 60.0    |
|---------------------------|----------|------------------|---------|
| Infil Coef - Sides (m/hr) | 0.000000 | Side Slope (1:x) | 4.0     |
| Safety Factor             | 2.0      | Invert Level (m) | 116.500 |
| Porosity                  | 1.00     | Cover Level (m)  | 117.100 |
| Base Width (m)            | 2.0      | Slope (1:x)      | 50.0    |

### Pipe Outflow Control

| Pipe Diameter (m) | 0.100  | Roughness (mm)      | 0.600 | Invert Level ( | (m) 116.500 |
|-------------------|--------|---------------------|-------|----------------|-------------|
| Slope (1:x)       | 150.0  | Entry Loss Coef     | 0.500 |                |             |
| Length (m)        | 25.000 | Coef of Contraction | 0.600 |                |             |

#### Cascade Summary of Results for storage swale 2 30%cc.src

| Upstream<br>Structures    | Outflow To | Overflow To |
|---------------------------|------------|-------------|
| storage swale 1 30%cc.src | (None)     | (None)      |

Half Drain Time : 31 minutes

| Dura  | orm<br>ation<br>.ns) | Maximum<br>Control<br>(l/s) | Maximum<br>Filtration<br>(l/s) | Maximum<br>Outflow<br>(l/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m) | Maximum<br>Volume<br>(m <sup>3</sup> ) | Status |
|-------|----------------------|-----------------------------|--------------------------------|-----------------------------|----------------------------------|-------------------------|----------------------------------------|--------|
| 15    | Summer               | 4.4                         | 0.0                            | 4.4                         | 116.6103                         | 0.2102                  | 8.5                                    | ОК     |
| 30    | Summer               | 4.9                         | 0.0                            | 4.9                         | 116.6298                         | 0.2297                  | 10.4                                   | ΟK     |
| 60    | Summer               | 5.1                         | 0.0                            | 5.1                         | 116.6452                         | 0.2452                  | 12.0                                   | ΟK     |
| 120   | Summer               | 5.2                         | 0.0                            | 5.2                         | 116.6497                         | 0.2497                  | 12.5                                   | ΟK     |
| 180   | Summer               | 5.1                         | 0.0                            | 5.1                         | 116.6448                         | 0.2447                  | 11.9                                   | ΟK     |
| 240   | Summer               | 5.0                         | 0.0                            | 5.0                         | 116.6357                         | 0.2357                  | 10.9                                   | ΟK     |
| 360   | Summer               | 4.8                         | 0.0                            | 4.8                         | 116.6188                         | 0.2187                  | 9.3                                    | ΟK     |
| 480   | Summer               | 4.3                         | 0.0                            | 4.3                         | 116.6087                         | 0.2087                  | 8.3                                    | ΟK     |
| 600   | Summer               | 3.8                         | 0.0                            | 3.8                         | 116.6008                         | 0.2007                  | 7.7                                    | ΟK     |
| 720   | Summer               | 3.4                         | 0.0                            | 3.4                         | 116.5947                         | 0.1947                  | 7.2                                    | ΟK     |
| 960   | Summer               | 2.9                         | 0.0                            | 2.9                         | 116.5858                         | 0.1857                  | 6.4                                    | ΟK     |
| 1440  | Summer               | 2.2                         | 0.0                            | 2.2                         | 116.5723                         | 0.1723                  | 5.5                                    | ΟK     |
| 2160  | Summer               | 1.7                         | 0.0                            | 1.7                         | 116.5608                         | 0.1608                  | 4.7                                    | ΟK     |
| 2880  | Summer               | 1.4                         | 0.0                            | 1.4                         | 116.5548                         | 0.1548                  | 4.3                                    | ΟK     |
| 4320  | Summer               | 1.1                         | 0.0                            | 1.1                         | 116.5483                         | 0.1483                  | 3.9                                    | ΟK     |
| 5760  | Summer               | 0.9                         | 0.0                            | 0.9                         | 116.5438                         | 0.1438                  | 3.7                                    | ΟK     |
| 7200  | Summer               | 0.7                         | 0.0                            | 0.7                         | 116.5398                         | 0.1398                  | 3.5                                    | ΟK     |
| 8640  | Summer               | 0.7                         | 0.0                            | 0.7                         | 116.5373                         | 0.1373                  | 3.3                                    | ΟK     |
| 10080 | Summer               | 0.6                         | 0.0                            | 0.6                         | 116.5353                         | 0.1353                  | 3.2                                    | ΟK     |
| 15    | Winter               | 4.7                         | 0.0                            | 4.7                         | 116.6168                         | 0.2167                  | 9.1                                    | ΟK     |
| 30    | Winter               | 5.0                         | 0.0                            | 5.0                         | 116.6397                         | 0.2397                  | 11.4                                   | ΟK     |
| 60    | Winter               | 5.2                         | 0.0                            | 5.2                         | 116.6572                         | 0.2572                  | 13.3                                   | ΟK     |
| 120   | Winter               | 5.2                         | 0.0                            | 5.2                         | 116.6563                         | 0.2562                  | 13.2                                   | ΟK     |
| 180   | Winter               | 5.1                         | 0.0                            | 5.1                         | 116.6417                         | 0.2417                  | 11.6                                   | ΟK     |
| 240   | Winter               | 4.9                         | 0.0                            | 4.9                         | 116.6267                         | 0.2267                  | 10.1                                   | ОК     |
| 360   | Winter               | 4.2                         | 0.0                            | 4.2                         | 116.6083                         | 0.2082                  | 8.3                                    | ОК     |
| 480   | Winter               | 3.6                         | 0.0                            | 3.6                         | 116.5973                         | 0.1972                  | 7.4                                    | O K    |

| Storm<br>Duration<br>(mins)                                                                                                                                |                                                                                                                                                                                                      | Rain<br>(mm/hr)                                                                                                                                                                                                                | Time-Peak<br>(mins)                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30<br>60<br>120<br>180<br>240<br>360<br>720<br>960<br>1440<br>2160<br>2880<br>4320<br>5760<br>7200<br>8640<br>10080<br>15<br>30<br>60<br>120<br>180<br>240 | Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Winter<br>Winter<br>Winter<br>Winter<br>Winter<br>Winter<br>Winter<br>Winter | $\begin{array}{c} 39.03\\ 25.41\\ 16.08\\ 9.97\\ 7.50\\ 6.13\\ 4.58\\ 3.72\\ 3.16\\ 2.76\\ 2.24\\ 1.67\\ 1.24\\ 1.01\\ 0.75\\ 0.61\\ 0.52\\ 0.45\\ 0.40\\ 39.03\\ 25.41\\ 16.08\\ 9.97\\ 7.50\\ 6.13\\ 4.58\\ 3.72\end{array}$ | $\begin{array}{c} 26\\ 36\\ 54\\ 82\\ 112\\ 140\\ 198\\ 258\\ 318\\ 378\\ 500\\ 738\\ 1100\\ 1468\\ 2188\\ 2928\\ 3616\\ 4384\\ 5136\\ 27\\ 37\\ 56\\ 86\\ 116\\ 144\\ 202\\ 262\end{array}$ |
|                                                                                                                                                            |                                                                                                                                                                                                      |                                                                                                                                                                                                                                |                                                                                                                                                                                              |

| Ove Arup & Partners Interna | tional Ltd                | Page 2 |
|-----------------------------|---------------------------|--------|
| The Arup Campus             | NFC                       |        |
| Blyth Gate                  | Storage Swale 2           |        |
| Solihull B90 8AE            |                           |        |
| Date 14/01/10               | Designed By CDH           |        |
| File NFC 30%CC.cas          | Checked By                |        |
| Micro Drainage              | Source Control W.11.4 net |        |

# Cascade Summary of Results for storage swale 2 30%cc.src

| Dura  | orm<br>ation<br>.ns) | Maximum<br>Control<br>(1/s) | Maximum<br>Filtration<br>(1/s) | Maximum<br>Outflow<br>(1/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m) | Maximum<br>Volume<br>(m³) | Status |
|-------|----------------------|-----------------------------|--------------------------------|-----------------------------|----------------------------------|-------------------------|---------------------------|--------|
| 600   | Winter               | 3.1                         | 0.0                            | 3.1                         | 116.5892                         | 0.1892                  | 6.7                       | ΟK     |
| 720   | Winter               | 2.7                         | 0.0                            | 2.7                         | 116.5827                         | 0.1827                  | 6.2                       | ОК     |
| 960   | Winter               | 2.3                         | 0.0                            | 2.3                         | 116.5728                         | 0.1728                  | 5.5                       | ОК     |
| 1440  | Winter               | 1.7                         | 0.0                            | 1.7                         | 116.5598                         | 0.1598                  | 4.6                       | ОК     |
| 2160  | Winter               | 1.3                         | 0.0                            | 1.3                         | 116.5523                         | 0.1523                  | 4.2                       | ОК     |
| 2880  | Winter               | 1.0                         | 0.0                            | 1.0                         | 116.5478                         | 0.1478                  | 3.9                       | ОК     |
| 4320  | Winter               | 0.8                         | 0.0                            | 0.8                         | 116.5408                         | 0.1408                  | 3.5                       | ОК     |
| 5760  | Winter               | 0.6                         | 0.0                            | 0.6                         | 116.5368                         | 0.1368                  | 3.3                       | ОК     |
| 7200  | Winter               | 0.5                         | 0.0                            | 0.5                         | 116.5338                         | 0.1338                  | 3.2                       | ОК     |
| 8640  | Winter               | 0.5                         | 0.0                            | 0.5                         | 116.5318                         | 0.1318                  | 3.1                       | ОК     |
| 10080 | Winter               | 0.4                         | 0.0                            | 0.4                         | 116.5298                         | 0.1298                  | 3.0                       | 0 K    |

| Storm<br>Duration<br>(mins) |        | Rain<br>(mm/hr) | Time-Peak<br>(mins) |
|-----------------------------|--------|-----------------|---------------------|
| 600                         | Winter | 3.16            | 322                 |
| 720                         | Winter | 2.76            | 384                 |
| 960                         | Winter | 2.24            | 502                 |
| 1440                        | Winter | 1.67            | 736                 |
| 2160                        | Winter | 1.24            | 1108                |
| 2880                        | Winter | 1.01            | 1468                |
| 4320                        | Winter | 0.75            | 2208                |
| 5760                        | Winter | 0.61            | 2928                |
| 7200                        | Winter | 0.52            | 3656                |
| 8640                        | Winter | 0.45            | 4312                |
| 10080                       | Winter | 0.40            | 5144                |

| Ove Arup & Partners Internat | cional Ltd                | Page 3 |
|------------------------------|---------------------------|--------|
| The Arup Campus              | NFC                       |        |
| Blyth Gate                   | Storage Swale 2           |        |
| Solihull B90 8AE             |                           |        |
| Date 14/01/10                | Designed By CDH           |        |
| File NFC 30%CC.cas           | Checked By                |        |
| Micro Drainage               | Source Control W.11.4 net |        |

### Cascade Rainfall Details for storage swale 2 30%cc.src

| Region                | ENG+WAL | Cv (Summer)           | 0.750 | Summer Storms    | Yes |
|-----------------------|---------|-----------------------|-------|------------------|-----|
| Return Period (years) | 1       | Cv (Winter)           | 0.840 | Winter Storms    | Yes |
| M5-60 (mm)            | 19.400  | Shortest Storm (mins) | 15    | Climate Change % | +30 |
| Ratio-R               | 0.400   | Longest Storm (mins)  | 10080 |                  |     |

Time / Area Diagram

Total Area (ha) = 0.068

| Time  | (mins) | Area |
|-------|--------|------|
| from: | to:    | (ha) |

0 4 0.068

| Ove Arup & Partners Internation | al Ltd                    | Page 4 |
|---------------------------------|---------------------------|--------|
| The Arup Campus                 | NFC                       |        |
| Blyth Gate                      | Storage Swale 2           |        |
| Solihull B90 8AE                |                           |        |
| Date 14/01/10                   | Designed By CDH           |        |
| File NFC 30%CC.cas              | Checked By                |        |
| Micro Drainage                  | Source Control W.11.4 net |        |

# Cascade Storage Controls for storage swale 2 30%cc.src

#### Swale Details

| Infil Coef - Base (m/hr)  | 0.000000 | Length (m)       | 140.0   |
|---------------------------|----------|------------------|---------|
| Infil Coef - Sides (m/hr) | 0.000000 | Side Slope (1:x) | 4.0     |
| Safety Factor             | 2.0      | Invert Level (m) | 116.400 |
| Porosity                  | 1.00     | Cover Level (m)  | 117.000 |
| Base Width (m)            | 2.0      | Slope (1:x)      | 150.0   |

### Pipe Outflow Control

| Pipe Diameter (m) | 0.100  | Roughness (mm)      | 0.600 | Invert Level ( | m) 116.500 |
|-------------------|--------|---------------------|-------|----------------|------------|
| Slope (1:x)       | 150.0  | Entry Loss Coef     | 0.500 |                |            |
| Length (m)        | 25.000 | Coef of Contraction | 0.600 |                |            |

| Ove Arup & Partners Internat | tional Ltd                | Page 1 |
|------------------------------|---------------------------|--------|
| The Arup Campus              | NFC                       |        |
| Blyth Gate                   | Car Park 1                |        |
| Solihull B90 8AE             |                           |        |
| Date 14/01/10                | Designed By CDH           |        |
| File NFC 30%CC.cas           | Checked By                |        |
| Micro Drainage               | Source Control W.11.4 net |        |

### Cascade Summary of Results for car park 1 30%cc.src

| Upstream   | Outflow To | Overflow To |
|------------|------------|-------------|
| Structures | OUCIIOW IO | overiiow io |

(None) cellular storage 30%cc.src (None)

Half Drain Time : 24 minutes

| Dura  | orm<br>ation<br>.ns) | Maximum<br>Control<br>(l/s) | Maximum<br>Filtration<br>(l/s) | Maximum<br>Outflow<br>(l/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m) | Maximum<br>Volume<br>(m³) | Status |
|-------|----------------------|-----------------------------|--------------------------------|-----------------------------|----------------------------------|-------------------------|---------------------------|--------|
| 15    | Summer               | 3.3                         | 0.0                            | 3.3                         | 114.3682                         | 0.1183                  | 3.6                       | ОК     |
| 30    | Summer               | 4.0                         | 0.0                            | 4.0                         | 114.4063                         | 0.1562                  | 6.3                       | ΟK     |
| 60    | Summer               | 4.5                         | 0.0                            | 4.5                         | 114.4317                         | 0.1817                  | 8.5                       | ΟK     |
| 120   | Summer               | 4.7                         | 0.0                            | 4.7                         | 114.4477                         | 0.1977                  | 10.0                      | ΟK     |
| 180   | Summer               | 4.7                         | 0.0                            | 4.7                         | 114.4492                         | 0.1992                  | 10.2                      | ΟK     |
| 240   | Summer               | 4.7                         | 0.0                            | 4.7                         | 114.4457                         | 0.1957                  | 9.9                       | ΟK     |
| 360   | Summer               | 4.5                         | 0.0                            | 4.5                         | 114.4333                         | 0.1832                  | 8.6                       | ΟK     |
| 480   | Summer               | 4.2                         | 0.0                            | 4.2                         | 114.4177                         | 0.1677                  | 7.2                       | ΟK     |
| 600   | Summer               | 4.0                         | 0.0                            | 4.0                         | 114.4033                         | 0.1532                  | 6.0                       | ΟK     |
| 720   | Summer               | 3.8                         | 0.0                            | 3.8                         | 114.3907                         | 0.1408                  | 5.1                       | ΟK     |
| 960   | Summer               | 3.4                         | 0.0                            | 3.4                         | 114.3702                         | 0.1203                  | 3.7                       | O K    |
| 1440  | Summer               | 2.7                         | 0.0                            | 2.7                         | 114.3483                         | 0.0983                  | 2.5                       | O K    |
| 2160  | Summer               | 2.1                         | 0.0                            | 2.1                         | 114.3313                         | 0.0813                  | 1.7                       | ΟK     |
| 2880  | Summer               | 1.7                         | 0.0                            | 1.7                         | 114.3213                         | 0.0713                  | 1.3                       | O K    |
| 4320  | Summer               | 1.2                         | 0.0                            | 1.2                         | 114.3098                         | 0.0598                  | 0.9                       | O K    |
| 5760  | Summer               | 1.0                         | 0.0                            | 1.0                         | 114.3008                         | 0.0508                  | 0.7                       | O K    |
| 7200  | Summer               | 0.8                         | 0.0                            | 0.8                         | 114.2952                         | 0.0452                  | 0.5                       | O K    |
| 8640  | Summer               | 0.7                         | 0.0                            | 0.7                         | 114.2917                         | 0.0417                  | 0.4                       | O K    |
| 10080 | Summer               | 0.7                         | 0.0                            | 0.7                         | 114.2897                         | 0.0397                  | 0.4                       | O K    |
| 15    | Winter               | 3.8                         | 0.0                            | 3.8                         | 114.3932                         | 0.1432                  | 5.3                       | O K    |
| 30    | Winter               | 4.5                         | 0.0                            | 4.5                         | 114.4317                         | 0.1817                  | 8.5                       | O K    |
| 60    | Winter               | 4.8                         | 0.0                            | 4.8                         | 114.4542                         | 0.2042                  | 10.7                      | O K    |
| 120   | Winter               | 4.9                         | 0.0                            | 4.9                         | 114.4622                         | 0.2122                  | 11.5                      | O K    |
|       | Winter               | 4.8                         | 0.0                            | 4.8                         | 114.4562                         | 0.2062                  | 10.9                      | ΟK     |
| 240   | Winter               | 4.7                         | 0.0                            | 4.7                         | 114.4463                         | 0.1962                  | 9.9                       | ΟK     |
| 360   |                      | 4.3                         | 0.0                            | 4.3                         | 114.4222                         | 0.1722                  | 7.6                       | O K    |
| 480   | Winter               | 3.9                         | 0.0                            | 3.9                         | 114.3988                         | 0.1488                  | 5.7                       | O K    |

| 30 Summer 25.41<br>60 Summer 16.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17<br>30<br>44<br>78                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 180       Summer       7.50       1         240       Summer       6.13       1         360       Summer       4.58       20         480       Summer       3.72       20         600       Summer       3.16       33         720       Summer       2.76       33         960       Summer       2.24       50         1440       Summer       1.67       73         2160       Summer       1.24       110         2880       Summer       0.75       216         5760       Summer       0.61       28         7200       Summer       0.45       423         10080       Summer       0.45       424         10080       Summer       0.40       503         15       Winter       39.03       33         30       Winter       25.41       36         60       Winter       16.08       42         120       Winter       9.97       37         180       Winter       7.50       12         240       Winter       6.13       12         360       Winter       4. | 44<br>06<br>56<br>24<br>02<br>58<br>00<br>58<br>56<br>58<br>56<br>58 |

| Ove Arup & Partners Internat | ional Ltd                 | Page 2   |
|------------------------------|---------------------------|----------|
| The Arup Campus              | NFC                       |          |
| Blyth Gate                   | Car Park 1                |          |
| Solihull B90 8AE             |                           |          |
| Date 14/01/10                | Designed By CDH           | Denner ( |
| File NFC 30%CC.cas           | Checked By                |          |
| Micro Drainage               | Source Control W.11.4 net |          |

### Cascade Summary of Results for car park 1 30%cc.src

| Sto<br>Dura<br>(mi | tion   | Maximum<br>Control<br>(l/s) | Maximum<br>Filtration<br>(1/s) | Maximum<br>Outflow<br>(l/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m) | Maximum<br>Volume<br>(m³) | Status |
|--------------------|--------|-----------------------------|--------------------------------|-----------------------------|----------------------------------|-------------------------|---------------------------|--------|
| 600                | Winter | 3.6                         | 0.0                            | 3.6                         | 114.3792                         | 0.1293                  | 4.3                       | ОК     |
| 720                | Winter | 3.3                         | 0.0                            | 3.3                         | 114.3643                         | 0.1143                  | 3.3                       | ΟK     |
| 960                | Winter | 2.7                         | 0.0                            | 2.7                         | 114.3477                         | 0.0978                  | 2.4                       | ОК     |
| 1440               | Winter | 2.0                         | 0.0                            | 2.0                         | 114.3303                         | 0.0803                  | 1.6                       | ОК     |
| 2160               | Winter | 1.5                         | 0.0                            | 1.5                         | 114.3167                         | 0.0668                  | 1.1                       | ОК     |
| 2880               | Winter | 1.2                         | 0.0                            | 1.2                         | 114.3083                         | 0.0583                  | 0.9                       | ОК     |
| 4320               | Winter | 0.9                         | 0.0                            | 0.9                         | 114.2968                         | 0.0467                  | 0.6                       | ОК     |
| 5760               | Winter | 0.7                         | 0.0                            | 0.7                         | 114.2913                         | 0.0412                  | 0.4                       | ОК     |
| 7200               | Winter | 0.6                         | 0.0                            | 0.6                         | 114.2882                         | 0.0382                  | 0.4                       | ОК     |
| 8640               | Winter | 0.5                         | 0.0                            | 0.5                         | 114.2858                         | 0.0357                  | 0.3                       | ОК     |
| 10080              | Winter | 0.4                         | 0.0                            | 0.4                         | 114.2838                         | 0.0337                  | 0.3                       | O K    |

| Dura  | orm<br>ation<br>.ns) | Rain<br>(mm/hr) | Time-Peak<br>(mins) |
|-------|----------------------|-----------------|---------------------|
| 600   | Winter               | 3.16            | 332                 |
| 720   | Winter               | 2.76            | 386                 |
| 960   | Winter               | 2.24            | 500                 |
| 1440  | Winter               | 1.67            | 736                 |
| 2160  | Winter               | 1.24            | 1100                |
| 2880  | Winter               | 1.01            | 1436                |
| 4320  | Winter               | 0.75            | 2196                |
| 5760  | Winter               | 0.61            | 2864                |
| 7200  | Winter               | 0.52            | 3608                |
| 8640  | Winter               | 0.45            | 4384                |
| 10080 | Winter               | 0.40            | 5072                |

| Ove Arup & Partners Internationa | l Ltd                     | Page 3 |
|----------------------------------|---------------------------|--------|
| The Arup Campus                  | NFC                       |        |
| Blyth Gate                       | Car Park 1                |        |
| Solihull B90 8AE                 |                           |        |
| Date 14/01/10                    | Designed By CDH           |        |
| File NFC 30%CC.cas               | Checked By                |        |
| Micro Drainage                   | Source Control W.11.4 net |        |

### Cascade Rainfall Details for car park 1 30%cc.src

| Region                | ENG+WAL | Cv (Summer)           | 0.750 | Summer Storms    | Yes |
|-----------------------|---------|-----------------------|-------|------------------|-----|
| Return Period (years) | 1       | Cv (Winter)           | 0.840 | Winter Storms    | Yes |
| M5-60 (mm)            | 19.400  | Shortest Storm (mins) | 15    | Climate Change % | +30 |
| Ratio-R               | 0.400   | Longest Storm (mins)  | 10080 |                  |     |

### Time / Area Diagram

Total Area (ha) = 0.215

| Time  | (mins) | Area |
|-------|--------|------|
| from: | to:    | (ha) |

0 4 0.215

| Ove Arup & Partners Internatio | nal Ltd                   | Page 4 |
|--------------------------------|---------------------------|--------|
| The Arup Campus                | NFC                       |        |
| Blyth Gate                     | Car Park 1                |        |
| Solihull B90 8AE               |                           |        |
| Date 14/01/10                  | Designed By CDH           |        |
| File NFC 30%CC.cas             | Checked By                |        |
| Micro Drainage                 | Source Control W.11.4 net |        |

### Cascade Storage Controls for car park 1 30%cc.src

#### Porous Car Park Details

| Infil Coef - Base (m/hr)     | 0.000000 | Invert Level (m)        | 114.250 |
|------------------------------|----------|-------------------------|---------|
| Membrane Percolation (mm/hr) | 1000     | Cover Level (m)         | 115.000 |
| Safety Factor                | 2.0      | Slope (1:x)             | 30.0    |
| Porosity                     | 0.30     | Max Percolation (l/s)   | 601.7   |
| Length (m)                   | 38.0     | Depression Storage (mm) | 5       |
| Width (m)                    | 57.0     | Evaporation (mm/day)    | 3       |

#### Orifice Outflow Control

Diameter (m) 0.075 Discharge Coefficient 0.600 Invert Level (m) 114.250

| Ove Arup & Partners Interna | tional Ltd                | Page 1 |
|-----------------------------|---------------------------|--------|
| The Arup Campus             | NFC                       |        |
| Blyth Gate                  | Car Park 2                |        |
| Solihull B90 8AE            |                           |        |
| Date 14/01/10               | Designed By CDH           |        |
| File NFC 30%CC.cas          | Checked By                |        |
| Micro Drainage              | Source Control W.11.4 net |        |

### Cascade Summary of Results for car park 2 30%cc.src

| Upstream   | Outflow To | Overflow To |
|------------|------------|-------------|
| Structures | OUCIIOW IO | overiiow io |

(None) cellular storage 30%cc.src (None)

Half Drain Time : 18 minutes

| Dura  | orm<br>ation<br>.ns) | Maximum<br>Control<br>(l/s) | Maximum<br>Filtration<br>(l/s) | Maximum<br>Outflow<br>(l/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m) | Maximum<br>Volume<br>(m <sup>3</sup> ) | Status |
|-------|----------------------|-----------------------------|--------------------------------|-----------------------------|----------------------------------|-------------------------|----------------------------------------|--------|
| 15    | Summer               | 10.5                        | 0.0                            | 10.5                        | 115.9013                         | 0.1512                  | 9.4                                    | ОК     |
| 30    | Summer               | 14.9                        | 0.0                            | 14.9                        | 115.9412                         | 0.1912                  | 15.1                                   | ОК     |
| 60    | Summer               | 17.8                        | 0.0                            | 17.8                        | 115.9688                         | 0.2187                  | 19.7                                   | ОК     |
| 120   | Summer               | 18.5                        | 0.0                            | 18.5                        | 115.9802                         | 0.2302                  | 21.8                                   | ОК     |
| 180   | Summer               | 18.2                        | 0.0                            | 18.2                        | 115.9757                         | 0.2257                  | 21.0                                   | ΟK     |
| 240   | Summer               | 17.7                        | 0.0                            | 17.7                        | 115.9672                         | 0.2172                  | 19.5                                   | ΟK     |
| 360   | Summer               | 15.9                        | 0.0                            | 15.9                        | 115.9498                         | 0.1997                  | 16.5                                   | ΟK     |
| 480   | Summer               | 14.1                        | 0.0                            | 14.1                        | 115.9337                         | 0.1837                  | 13.9                                   | ΟK     |
| 600   | Summer               | 12.6                        | 0.0                            | 12.6                        | 115.9208                         | 0.1707                  | 12.0                                   | ΟK     |
| 720   | Summer               | 11.4                        | 0.0                            | 11.4                        | 115.9098                         | 0.1597                  | 10.5                                   | ΟK     |
| 960   | Summer               | 9.6                         | 0.0                            | 9.6                         | 115.8932                         | 0.1433                  | 8.5                                    | O K    |
| 1440  | Summer               | 7.3                         | 0.0                            | 7.3                         | 115.8723                         | 0.1223                  | 6.2                                    | ΟK     |
| 2160  | Summer               | 5.5                         | 0.0                            | 5.5                         | 115.8503                         | 0.1003                  | 4.2                                    | ΟK     |
| 2880  | Summer               | 4.5                         | 0.0                            | 4.5                         | 115.8372                         | 0.0873                  | 3.2                                    | ΟK     |
| 4320  |                      | 3.3                         | 0.0                            | 3.3                         | 115.8258                         | 0.0758                  | 2.4                                    | ΟK     |
| 5760  | Summer               | 2.7                         | 0.0                            | 2.7                         | 115.8197                         | 0.0698                  | 2.0                                    | ΟK     |
|       | Summer               | 2.2                         | 0.0                            | 2.2                         | 115.8128                         | 0.0628                  | 1.6                                    | ΟK     |
|       | Summer               | 1.9                         | 0.0                            | 1.9                         | 115.8077                         | 0.0578                  | 1.4                                    | ΟK     |
| 10080 | Summer               | 1.7                         | 0.0                            | 1.7                         | 115.8043                         | 0.0543                  | 1.2                                    | ΟK     |
|       | Winter               | 13.7                        | 0.0                            | 13.7                        | 115.9303                         | 0.1802                  | 13.4                                   | ΟK     |
|       | Winter               | 17.8                        | 0.0                            | 17.8                        | 115.9688                         | 0.2187                  | 19.8                                   | ΟK     |
| 60    |                      | 19.1                        | 0.0                            | 19.1                        | 115.9912                         | 0.2412                  | 24.0                                   | O K    |
| 120   |                      | 18.9                        | 0.0                            | 18.9                        | 115.9877                         | 0.2377                  | 23.4                                   | ΟK     |
|       | Winter               | 18.0                        | 0.0                            | 18.0                        | 115.9723                         | 0.2222                  | 20.4                                   | ΟK     |
|       | Winter               | 16.7                        | 0.0                            | 16.7                        | 115.9567                         | 0.2067                  | 17.6                                   | ОК     |
| 360   |                      | 13.9                        | 0.0                            | 13.9                        | 115.9317                         | 0.1817                  | 13.6                                   | ОК     |
| 480   | Winter               | 11.7                        | 0.0                            | 11.7                        | 115.9122                         | 0.1622                  | 10.8                                   | O K    |

| Storm<br>Duration<br>(mins) |                  | Rain<br>(mm/hr) | Time-Peak<br>(mins) |
|-----------------------------|------------------|-----------------|---------------------|
| 15<br>30                    |                  | 39.03<br>25.41  | 17<br>25            |
| 60                          | Summer           | 16.08           | 42                  |
| 120                         |                  | 9.97            | 74                  |
| 180                         |                  | 7.50            | 106                 |
| 240                         | Summer           | 6.13            | 136                 |
| 360                         | Summer           | 4.58            | 196                 |
| 480                         | Summer           | 3.72            | 254                 |
| 600                         | Summer           | 3.16            | 314                 |
| 720                         |                  | 2.76            | 374                 |
| 960                         |                  | 2.24            | 492                 |
| 1440                        |                  | 1.67            | 736                 |
| 2160                        | Summer           | 1.24            | 1100                |
| 2880                        | Summer           | 1.01            | 1468                |
| 4320                        | Summer           | 0.75            | 2200                |
| 5760                        |                  | 0.61            | 2936                |
| 7200                        |                  | 0.52            | 3640                |
| 8640                        |                  | 0.45            | 4392                |
| 10080                       |                  | 0.40            | 5120                |
| 15                          | Winter           | 39.03           | 16                  |
| 30<br>60                    | Winter<br>Winter | 25.41<br>16.08  | 26<br>44            |
| 120                         |                  | 9.97            | 44<br>78            |
| 120                         |                  | 9.97<br>7.50    | 78<br>110           |
|                             | Winter           | 6.13            | 140                 |
|                             | Winter           | 4.58            | 200                 |
| 480                         | Winter           | 3.72            | 258                 |

| Ove Arup & Partners Internatio | onal Ltd                  | Page 2 |
|--------------------------------|---------------------------|--------|
| The Arup Campus                | NFC                       |        |
| Blyth Gate                     | Car Park 2                |        |
| Solihull B90 8AE               |                           |        |
| Date 14/01/10                  | Designed By CDH           |        |
| File NFC 30%CC.cas             | Checked By                |        |
| Micro Drainage                 | Source Control W.11.4 net |        |

### Cascade Summary of Results for car park 2 30%cc.src

| Stor<br>Durati<br>(mins | ion   | Maximum<br>Control<br>(1/s) | Maximum<br>Filtration<br>(1/s) | Maximum<br>Outflow<br>(1/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m) | Maximum<br>Volume<br>(m³) | Status |
|-------------------------|-------|-----------------------------|--------------------------------|-----------------------------|----------------------------------|-------------------------|---------------------------|--------|
| 600 W:                  | inter | 10.1                        | 0.0                            | 10.1                        | 115.8982                         | 0.1483                  | 9.0                       | ОК     |
| 720 W:                  | inter | 8.9                         | 0.0                            | 8.9                         | 115.8873                         | 0.1373                  | 7.7                       | ОК     |
| 960 W:                  | inter | 7.3                         | 0.0                            | 7.3                         | 115.8717                         | 0.1218                  | 6.1                       | ОК     |
| 1440 W:                 | inter | 5.4                         | 0.0                            | 5.4                         | 115.8487                         | 0.0988                  | 4.0                       | ΟK     |
| 2160 W:                 | inter | 4.0                         | 0.0                            | 4.0                         | 115.8327                         | 0.0828                  | 2.8                       | ΟK     |
| 2880 W:                 | inter | 3.2                         | 0.0                            | 3.2                         | 115.8252                         | 0.0753                  | 2.3                       | ΟK     |
| 4320 W:                 | inter | 2.3                         | 0.0                            | 2.3                         | 115.8148                         | 0.0648                  | 1.7                       | ОК     |
| 5760 W:                 | inter | 1.9                         | 0.0                            | 1.9                         | 115.8067                         | 0.0568                  | 1.3                       | ОК     |
| 7200 W:                 | inter | 1.6                         | 0.0                            | 1.6                         | 115.8018                         | 0.0518                  | 1.1                       | ОК     |
| 8640 W:                 | inter | 1.3                         | 0.0                            | 1.3                         | 115.7982                         | 0.0483                  | 1.0                       | ОК     |
| 10080 W:                | inter | 1.2                         | 0.0                            | 1.2                         | 115.7952                         | 0.0453                  | 0.8                       | O K    |

| Storm<br>Duration<br>(mins) |        | Rain<br>(mm/hr) | Time-Peak<br>(mins) |
|-----------------------------|--------|-----------------|---------------------|
| 600                         | Winter | 3.16            | 318                 |
| 720                         | Winter | 2.76            | 376                 |
| 960                         | Winter | 2.24            | 498                 |
| 1440                        | Winter | 1.67            | 736                 |
| 2160                        | Winter | 1.24            | 1088                |
| 2880                        | Winter | 1.01            | 1452                |
| 4320                        | Winter | 0.75            | 2172                |
| 5760                        | Winter | 0.61            | 2928                |
| 7200                        | Winter | 0.52            | 3624                |
| 8640                        | Winter | 0.45            | 4376                |
| 10080                       | Winter | 0.40            | 5120                |

| Ove Arup & Partners Internationa | al Ltd                    | Page 3 |
|----------------------------------|---------------------------|--------|
| The Arup Campus                  | NFC                       |        |
| Blyth Gate                       | Car Park 2                |        |
| Solihull B90 8AE                 |                           |        |
| Date 14/01/10                    | Designed By CDH           |        |
| File NFC 30%CC.cas               | Checked By                |        |
| Micro Drainage                   | Source Control W.11.4 net |        |

### Cascade Rainfall Details for car park 2 30%cc.src

| Region                | ENG+WAL | Cv (Summer)           | 0.750 | Summer Storms    | Yes |
|-----------------------|---------|-----------------------|-------|------------------|-----|
| Return Period (years) | 1       | Cv (Winter)           | 0.840 | Winter Storms    | Yes |
| M5-60 (mm)            | 19.400  | Shortest Storm (mins) | 15    | Climate Change % | +30 |
| Ratio-R               | 0.400   | Longest Storm (mins)  | 10080 |                  |     |

### Time / Area Diagram

Total Area (ha) = 0.572

| Time  | (mins) | Area |
|-------|--------|------|
| from: | to:    | (ha) |

0 4 0.572

| Ove Arup & Partners Internation | nal Ltd                   | Page 4 |
|---------------------------------|---------------------------|--------|
| The Arup Campus                 | NFC                       |        |
| Blyth Gate                      | Car Park 2                |        |
| Solihull B90 8AE                |                           |        |
| Date 14/01/10                   | Designed By CDH           |        |
| File NFC 30%CC.cas              | Checked By                |        |
| Micro Drainage                  | Source Control W.11.4 net |        |

### Cascade Storage Controls for car park 2 30%cc.src

#### Porous Car Park Details

| Infil Coef - Base (m/hr)     | 0.000000 | Invert Level (m)        | 115.750 |
|------------------------------|----------|-------------------------|---------|
| Membrane Percolation (mm/hr) | 1000     | Cover Level (m)         | 116.500 |
| Safety Factor                | 2.0      | Slope (1:x)             | 50.0    |
| Porosity                     | 0.30     | Max Percolation (l/s)   | 1588.9  |
| Length (m)                   | 104.0    | Depression Storage (mm) | 5       |
| Width (m)                    | 55.0     | Evaporation (mm/day)    | 3       |

#### Orifice Outflow Control

Diameter (m) 0.150 Discharge Coefficient 0.600 Invert Level (m) 115.750

| Ove Arup & Partners Internationa | l Ltd                     | Page 1 |
|----------------------------------|---------------------------|--------|
| The Arup Campus                  | NFC                       |        |
| Blyth Gate                       | Cellular Storage          |        |
| Solihull B90 8AE                 |                           |        |
| Date 14/01/10                    | Designed By CDH           |        |
| File NFC 30%CC.cas               | Checked By                |        |
| Micro Drainage                   | Source Control W.11.4 net |        |

### Cascade Summary of Results for cellular storage 30%cc.src

| Upstr<br>Struct          | Outflo       | w To | 0       | Overflow To |
|--------------------------|--------------|------|---------|-------------|
| car park 1<br>car park 2 | storage swal | e 3  | 30%.src | (None)      |

Half Drain Time : 18 minutes

| Dura  | orm<br>ation<br>.ns) | Maximum<br>Control<br>(1/s) | Maximum<br>Filtration<br>(1/s) | Maximum<br>Outflow<br>(l/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m) | Maximum<br>Volume<br>(m <sup>3</sup> ) | Status |
|-------|----------------------|-----------------------------|--------------------------------|-----------------------------|----------------------------------|-------------------------|----------------------------------------|--------|
| 15    | Summer               | 119.2                       | 0.0                            | 119.2                       | 110.3493                         | 0.3492                  | 165.9                                  | ОК     |
| 30    | Summer               | 149.6                       | 0.0                            | 149.6                       | 110.4087                         | 0.4087                  | 194.1                                  | ΟK     |
| 60    | Summer               | 162.6                       | 0.0                            | 162.6                       | 110.4287                         | 0.4287                  | 203.6                                  | ΟK     |
| 120   | Summer               | 155.8                       | 0.0                            | 155.8                       | 110.4182                         | 0.4182                  | 198.6                                  | ΟK     |
| 180   | Summer               | 140.7                       | 0.0                            | 140.7                       | 110.3942                         | 0.3942                  | 187.3                                  | ΟK     |
| 240   | Summer               | 129.4                       | 0.0                            | 129.4                       | 110.3708                         | 0.3707                  | 176.2                                  | ΟK     |
| 360   | Summer               | 111.3                       | 0.0                            | 111.3                       | 110.3327                         | 0.3327                  | 158.1                                  | ΟK     |
| 480   | Summer               | 98.0                        | 0.0                            | 98.0                        | 110.3047                         | 0.3047                  | 144.7                                  | ΟK     |
| 600   | Summer               | 87.7                        | 0.0                            | 87.7                        | 110.2858                         | 0.2857                  | 135.6                                  | ΟK     |
| 720   | Summer               | 78.5                        | 0.0                            | 78.5                        | 110.2712                         | 0.2712                  | 128.9                                  | O K    |
| 960   | Summer               | 65.6                        | 0.0                            | 65.6                        | 110.2507                         | 0.2507                  | 119.2                                  | O K    |
| 1440  | Summer               | 49.3                        | 0.0                            | 49.3                        | 110.2207                         | 0.2207                  | 104.9                                  | O K    |
| 2160  | Summer               | 37.9                        | 0.0                            | 37.9                        | 110.1898                         | 0.1897                  | 90.0                                   | ΟK     |
| 2880  | Summer               | 31.1                        | 0.0                            | 31.1                        | 110.1712                         | 0.1713                  | 81.3                                   | O K    |
| 4320  | Summer               | 23.2                        | 0.0                            | 23.2                        | 110.1488                         | 0.1488                  | 70.6                                   | O K    |
| 5760  | Summer               | 18.8                        | 0.0                            | 18.8                        | 110.1322                         | 0.1323                  | 62.7                                   | O K    |
|       | Summer               | 15.9                        | 0.0                            | 15.9                        | 110.1213                         | 0.1213                  | 57.7                                   | ΟK     |
| 8640  | Summer               | 14.0                        | 0.0                            | 14.0                        | 110.1138                         | 0.1138                  | 54.0                                   | O K    |
| 10080 | Summer               | 12.5                        | 0.0                            | 12.5                        | 110.1083                         | 0.1083                  | 51.3                                   | O K    |
| 15    | Winter               | 136.1                       | 0.0                            | 136.1                       | 110.3848                         | 0.3847                  | 182.7                                  | O K    |
| 30    | Winter               | 171.7                       | 0.0                            | 171.7                       | 110.4427                         | 0.4427                  | 210.4                                  | O K    |
| 60    | Winter               | 177.3                       | 0.0                            | 177.3                       | 110.4512                         | 0.4512                  | 214.3                                  | O K    |
| 120   | Winter               | 154.4                       | 0.0                            | 154.4                       | 110.4162                         | 0.4162                  | 197.8                                  | ΟK     |
| 180   | Winter               | 133.0                       | 0.0                            | 133.0                       | 110.3783                         | 0.3782                  | 179.5                                  | O K    |
| 240   | Winter               | 117.5                       | 0.0                            | 117.5                       | 110.3457                         | 0.3457                  | 164.3                                  | ΟK     |
| 360   | Winter               | 95.8                        | 0.0                            | 95.8                        | 110.3002                         | 0.3002                  | 142.5                                  | O K    |

| Dura         | orm<br>ition<br>.ns) | Rain<br>(mm/hr) | Time-Peak<br>(mins) |
|--------------|----------------------|-----------------|---------------------|
| 15<br>30     |                      | 39.03<br>25.41  | 28<br>36            |
| 60           | Summer               | 16.08           | 50                  |
| 120          | Summer               | 9.97            | 82                  |
| 180          | Summer               | 7.50            | 112                 |
| 240          | Summer               | 6.13            | 144                 |
| 360          |                      | 4.58            | 204                 |
| 480          |                      | 3.72            | 264                 |
| 600          |                      | 3.16            | 322                 |
| 720          |                      | 2.76            | 382                 |
| 960          | Summer               | 2.24            | 504                 |
| 1440         |                      | 1.67            | 748                 |
| 2160         |                      | 1.24            | 1108                |
| 2880         |                      | 1.01            | 1476                |
| 4320         | Summer               | 0.75            | 2208                |
| 5760         | Summer               | 0.61            | 2936                |
| 7200<br>8640 |                      | 0.52<br>0.45    | 3672                |
| 10080        |                      | 0.45            | 4400<br>5096        |
| 10080        | Summer<br>Winter     | 39.03           | 28                  |
| 30           | Winter               | 25.41           | 28                  |
| 50<br>60     |                      | 16.08           | 52                  |
| 120          |                      | 9.97            | 84                  |
| 180          |                      | 9.97<br>7.50    | 116                 |
| 240          |                      | 6.13            | 146                 |
| 360          | Winter               | 4.58            | 206                 |

| Ove Arup & Partners Internation | Page 2                    |  |
|---------------------------------|---------------------------|--|
| The Arup Campus                 | NFC                       |  |
| Blyth Gate                      | Cellular Storage          |  |
| Solihull B90 8AE                | -                         |  |
| Date 14/01/10                   | Designed By CDH           |  |
| File NFC 30%CC.cas              | Checked By                |  |
| Micro Drainage                  | Source Control W.11.4 net |  |

# Cascade Summary of Results for cellular storage 30%cc.src

| Dura  | orm<br>ition<br>.ns) | Maximum<br>Control<br>(l/s) | Maximum<br>Filtration<br>(1/s) | Maximum<br>Outflow<br>(1/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m) | Maximum<br>Volume<br>(m³) | Status |
|-------|----------------------|-----------------------------|--------------------------------|-----------------------------|----------------------------------|-------------------------|---------------------------|--------|
| 480   | Winter               | 80.4                        | 0.0                            | 80.4                        | 110.2742                         | 0.2742                  | 130.3                     | ΟK     |
| 600   | Winter               | 69.4                        | 0.0                            | 69.4                        | 110.2568                         | 0.2567                  | 122.0                     | ΟK     |
| 720   | Winter               | 61.2                        | 0.0                            | 61.2                        | 110.2438                         | 0.2437                  | 115.9                     | ΟK     |
| 960   | Winter               | 49.5                        | 0.0                            | 49.5                        | 110.2213                         | 0.2212                  | 105.2                     | ΟK     |
| 1440  | Winter               | 37.4                        | 0.0                            | 37.4                        | 110.1882                         | 0.1883                  | 89.3                      | ΟK     |
| 2160  | Winter               | 27.9                        | 0.0                            | 27.9                        | 110.1628                         | 0.1628                  | 77.2                      | ΟK     |
| 2880  | Winter               | 22.5                        | 0.0                            | 22.5                        | 110.1462                         | 0.1463                  | 69.6                      | ΟK     |
| 4320  | Winter               | 16.7                        | 0.0                            | 16.7                        | 110.1243                         | 0.1243                  | 59.1                      | ΟK     |
| 5760  | Winter               | 13.6                        | 0.0                            | 13.6                        | 110.1123                         | 0.1123                  | 53.2                      | ΟK     |
| 7200  | Winter               | 11.5                        | 0.0                            | 11.5                        | 110.1038                         | 0.1038                  | 49.2                      | ΟK     |
| 8640  | Winter               | 10.1                        | 0.0                            | 10.1                        | 110.0963                         | 0.0963                  | 45.6                      | ΟK     |
| 10080 | Winter               | 9.0                         | 0.0                            | 9.0                         | 110.0902                         | 0.0903                  | 42.8                      | O K    |

| Storm<br>Duration<br>(mins) |        | Rain<br>(mm/hr) | Time-Peak<br>(mins) |
|-----------------------------|--------|-----------------|---------------------|
| 480                         | Winter | 3.72            | 264                 |
| 600                         | Winter | 3.16            | 326                 |
| 720                         | Winter | 2.76            | 386                 |
| 960                         | Winter | 2.24            | 514                 |
| 1440                        | Winter | 1.67            | 750                 |
| 2160                        | Winter | 1.24            | 1108                |
| 2880                        | Winter | 1.01            | 1480                |
| 4320                        | Winter | 0.75            | 2212                |
| 5760                        | Winter | 0.61            | 2888                |
| 7200                        | Winter | 0.52            | 3664                |
| 8640                        | Winter | 0.45            | 4392                |
| 10080                       | Winter | 0.40            | 5032                |

| Ove Arup & Partners Internat | tional Ltd                | Page 3 |
|------------------------------|---------------------------|--------|
| The Arup Campus              | NFC                       |        |
| Blyth Gate                   | Cellular Storage          |        |
| Solihull B90 8AE             |                           |        |
| Date 14/01/10                | Designed By CDH           |        |
| File NFC 30%CC.cas           | Checked By                |        |
| Micro Drainage               | Source Control W.11.4 net |        |

### Cascade Rainfall Details for cellular storage 30%cc.src

| Region                | ENG+WAL | Cv (Summer)           | 0.750 | Summer Storms    | Yes |
|-----------------------|---------|-----------------------|-------|------------------|-----|
| Return Period (years) | 1       | Cv (Winter)           | 0.840 | Winter Storms    | Yes |
| M5-60 (mm)            | 19.400  | Shortest Storm (mins) | 15    | Climate Change % | +30 |
| Ratio-R               | 0.400   | Longest Storm (mins)  | 10080 |                  |     |

### Time / Area Diagram

#### Total Area (ha) = 3.082

|        |  |          |  | (mins)<br>to: |       |
|--------|--|----------|--|---------------|-------|
| 0<br>4 |  | 12<br>16 |  | 20            | 0.770 |

| Ove Arup & Partners Interna | Page 4                    |  |
|-----------------------------|---------------------------|--|
| The Arup Campus             | NFC                       |  |
| Blyth Gate                  | Cellular Storage          |  |
| Solihull B90 8AE            |                           |  |
| Date 14/01/10               | Designed By CDH           |  |
| File NFC 30%CC.cas          | Checked By                |  |
| Micro Drainage              | Source Control W.11.4 net |  |

### Cascade Storage Controls for cellular storage 30%cc.src

### Cellular Storage Details

| Infil Coef - Base (m/hr)  | 0.00000  | Porosity         | 0.95    |
|---------------------------|----------|------------------|---------|
| Infil Coef - Sides (m/hr) | 0.000000 | Invert Level (m) | 110.000 |
| Safety Factor             | 2.0      | Ground Level (m) | 112.000 |

| Depth<br>(m) | Area<br>(m²) | Infil.<br>Area<br>(m²) |
|--------------|--------------|------------------------|--------------|--------------|------------------------|--------------|--------------|------------------------|--------------|--------------|------------------------|
| 0.00         | 500.0        | 500.0                  | 1.40         | 0.0          | 616.3                  | 2.80         | 0.0          | 616.3                  | 4.20         | 0.0          | 616.3                  |
| 0.20         | 500.0        | 517.9                  | 1.60         | 0.0          | 616.3                  | 3.00         | 0.0          | 616.3                  | 4.40         | 0.0          | 616.3                  |
| 0.40         | 500.0        | 535.8                  | 1.80         | 0.0          | 616.3                  | 3.20         | 0.0          | 616.3                  | 4.60         | 0.0          | 616.3                  |
| 0.60         | 500.0        | 553.7                  | 2.00         | 0.0          | 616.3                  | 3.40         | 0.0          | 616.3                  | 4.80         | 0.0          | 616.3                  |
| 0.80         | 500.0        | 571.6                  | 2.20         | 0.0          | 616.3                  | 3.60         | 0.0          | 616.3                  | 5.00         | 0.0          | 616.3                  |
| 1.00         | 500.0        | 589.4                  | 2.40         | 0.0          | 616.3                  | 3.80         | 0.0          | 616.3                  |              |              |                        |
| 1.20         | 500.0        | 607.3                  | 2.60         | 0.0          | 616.3                  | 4.00         | 0.0          | 616.3                  |              |              |                        |

### Orifice Outflow Control

Diameter (m) 0.500 Discharge Coefficient 0.600 Invert Level (m) 110.000

| Ove Arup & Partners Intern | Page 1                    |  |
|----------------------------|---------------------------|--|
| The Arup Campus            | NFC                       |  |
| Blyth Gate                 | Car Park 3                |  |
| Solihull B90 8AE           |                           |  |
| Date 14/01/10              | Designed By CDH           |  |
| File NFC 30%CC.cas         | Checked By                |  |
| Micro Drainage             | Source Control W.11.4 net |  |

### Cascade Summary of Results for car park 3 30%cc.src

| Upstream   | Outflow To | Overflow To |
|------------|------------|-------------|
| Structures | OUCTION IO | overriow io |

(None) storage swale 3 30%.src (None)

Half Drain Time : 155 minutes

| Dura  | orm<br>ation<br>.ns) | Maximum<br>Control<br>(l/s) | Maximum<br>Filtration<br>(l/s) | Maximum<br>Outflow<br>(l/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m) | Maximum<br>Volume<br>(m³) | Status |
|-------|----------------------|-----------------------------|--------------------------------|-----------------------------|----------------------------------|-------------------------|---------------------------|--------|
|       | Summer               | 0.9                         | 0.0                            | 0.9                         | 113.4402                         | 0.1902                  | 38.2                      | ΟK     |
| 30    | Summer               | 2.6                         | 0.0                            | 2.6                         | 113.4692                         | 0.2192                  | 50.8                      | ΟK     |
| 60    | Summer               | 4.3                         | 0.0                            | 4.3                         | 113.4932                         | 0.2432                  | 62.6                      | ΟK     |
|       | Summer               | 5.4                         | 0.0                            | 5.4                         | 113.5092                         | 0.2592                  | 71.0                      | ΟK     |
| 180   | Summer               | 6.1                         | 0.0                            | 6.1                         | 113.5173                         | 0.2672                  | 75.1                      | ΟK     |
| 240   | Summer               | 6.5                         | 0.0                            | 6.5                         | 113.5222                         | 0.2722                  | 77.7                      | ΟK     |
|       | Summer               | 7.0                         | 0.0                            | 7.0                         | 113.5272                         | 0.2772                  | 80.3                      | ΟK     |
| 480   | Summer               | 7.1                         | 0.0                            | 7.1                         | 113.5282                         | 0.2782                  | 80.8                      | ΟK     |
| 600   | Summer               | 7.0                         | 0.0                            | 7.0                         | 113.5277                         | 0.2777                  | 80.5                      | ΟK     |
|       | Summer               | 6.9                         | 0.0                            | 6.9                         | 113.5262                         | 0.2762                  | 79.7                      | ΟK     |
|       | Summer               | 6.5                         | 0.0                            | 6.5                         | 113.5222                         | 0.2722                  | 77.8                      | ΟK     |
| 1440  | Summer               | 5.8                         | 0.0                            | 5.8                         | 113.5143                         | 0.2642                  | 73.5                      | ΟK     |
|       | Summer               | 4.9                         | 0.0                            | 4.9                         | 113.5033                         | 0.2532                  | 67.9                      | ΟK     |
|       | Summer               | 4.3                         | 0.0                            | 4.3                         | 113.4942                         | 0.2442                  | 63.0                      | ΟK     |
| 4320  | Summer               | 3.5                         | 0.0                            | 3.5                         | 113.4812                         | 0.2312                  | 56.5                      | ΟK     |
| 5760  | Summer               | 3.0                         | 0.0                            | 3.0                         | 113.4737                         | 0.2237                  | 52.9                      | ΟK     |
|       | Summer               | 2.6                         | 0.0                            | 2.6                         | 113.4688                         | 0.2187                  | 50.7                      | ΟK     |
| 8640  | Summer               | 2.3                         | 0.0                            | 2.3                         | 113.4652                         | 0.2152                  | 49.0                      | ΟK     |
| 10080 | Summer               | 2.0                         | 0.0                            | 2.0                         | 113.4622                         | 0.2123                  | 47.7                      | ΟK     |
| 15    | Winter               | 1.5                         | 0.0                            | 1.5                         | 113.4532                         | 0.2032                  | 43.6                      | ΟK     |
| 30    | Winter               | 3.6                         | 0.0                            | 3.6                         | 113.4832                         | 0.2332                  | 57.4                      | ΟK     |
| 60    | Winter               | 5.4                         | 0.0                            | 5.4                         | 113.5088                         | 0.2587                  | 70.6                      | ΟK     |
| 120   |                      | 6.8                         | 0.0                            | 6.8                         | 113.5257                         | 0.2757                  | 79.5                      | ΟK     |
| 180   | Winter               | 7.5                         | 0.0                            | 7.5                         | 113.5332                         | 0.2832                  | 83.4                      | ΟK     |
| 240   | Winter               | 7.8                         | 0.0                            | 7.8                         | 113.5368                         | 0.2867                  | 85.3                      | O K    |
| 360   | Winter               | 7.9                         | 0.0                            | 7.9                         | 113.5378                         | 0.2877                  | 85.8                      | ОК     |
| 480   | Winter               | 7.7                         | 0.0                            | 7.7                         | 113.5352                         | 0.2852                  | 84.4                      | O K    |

| Dura  | orm<br>ition<br>.ns) | Rain<br>(mm/hr) | Time-Peak<br>(mins) |
|-------|----------------------|-----------------|---------------------|
| 15    | Summer               | 39.03           | 26                  |
| 30    | Summer               | 25.41           | 40                  |
| 60    | Summer               | 16.08           | 66                  |
| 120   | Summer               | 9.97            | 108                 |
| 180   | Summer               | 7.50            | 136                 |
| 240   | Summer               | 6.13            | 168                 |
| 360   | Summer               | 4.58            | 234                 |
| 480   | Summer               | 3.72            | 300                 |
| 600   | Summer               | 3.16            | 364                 |
| 720   | Summer               | 2.76            | 428                 |
| 960   | Summer               | 2.24            | 554                 |
| 1440  | Summer               | 1.67            | 798                 |
| 2160  | Summer               | 1.24            | 1168                |
| 2880  | Summer               | 1.01            | 1528                |
| 4320  | Summer               | 0.75            | 2248                |
| 5760  | Summer               | 0.61            | 2944                |
| 7200  | Summer               | 0.52            | 3680                |
| 8640  | Summer               | 0.45            | 4408                |
| 10080 | Summer               | 0.40            | 5144                |
| 15    | Winter               | 39.03           | 26                  |
| 30    | Winter               | 25.41           | 39                  |
| 60    | Winter               | 16.08           | 64                  |
| 120   | Winter               | 9.97            | 106                 |
| 180   | Winter               | 7.50            | 140                 |
| 240   | Winter               | 6.13            | 176                 |
| 360   | Winter               | 4.58            | 248                 |
| 480   | Winter               | 3.72            | 316                 |

| Ove Arup & Partners Internat | Page 2                    |  |
|------------------------------|---------------------------|--|
| The Arup Campus              | NFC                       |  |
| Blyth Gate                   | Car Park 3                |  |
| Solihull B90 8AE             |                           |  |
| Date 14/01/10                | Designed By CDH           |  |
| File NFC 30%CC.cas           | Checked By                |  |
| Micro Drainage               | Source Control W.11.4 net |  |

### Cascade Summary of Results for car park 3 30%cc.src

| Storm<br>Duration<br>(mins) | Maximum<br>Control<br>(l/s) | Maximum<br>Filtration<br>(l/s) | Maximum<br>Outflow<br>(l/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m) | Maximum<br>Volume<br>(m <sup>3</sup> ) | Status |
|-----------------------------|-----------------------------|--------------------------------|-----------------------------|----------------------------------|-------------------------|----------------------------------------|--------|
| 600 Winte                   | r 7.3                       | 0.0                            | 7.3                         | 113.5313                         | 0.2812                  | 82.5                                   | ОК     |
| 720 Winte                   | r 7.0                       | 0.0                            | 7.0                         | 113.5277                         | 0.2777                  | 80.5                                   | ОК     |
| 960 Winte                   | r 6.4                       | 0.0                            | 6.4                         | 113.5202                         | 0.2702                  | 76.6                                   | ОК     |
| 1440 Winte                  | r 5.3                       | 0.0                            | 5.3                         | 113.5078                         | 0.2577                  | 70.1                                   | ОК     |
| 2160 Winte                  | r 4.2                       | 0.0                            | 4.2                         | 113.4928                         | 0.2427                  | 62.4                                   | ΟK     |
| 2880 Winte                  | r 3.6                       | 0.0                            | 3.6                         | 113.4822                         | 0.2322                  | 57.1                                   | ΟK     |
| 4320 Winte                  | r 2.7                       | 0.0                            | 2.7                         | 113.4707                         | 0.2207                  | 51.6                                   | ОК     |
| 5760 Winte                  | r 2.2                       | 0.0                            | 2.2                         | 113.4648                         | 0.2147                  | 48.8                                   | ОК     |
| 7200 Winte                  | r 1.9                       | 0.0                            | 1.9                         | 113.4607                         | 0.2107                  | 46.9                                   | ОК     |
| 8640 Winte                  | r 1.6                       | 0.0                            | 1.6                         | 113.4563                         | 0.2062                  | 44.9                                   | ОК     |
| 10080 Winte                 | r 1.5                       | 0.0                            | 1.5                         | 113.4528                         | 0.2028                  | 43.4                                   | O K    |

| Dura  | orm<br>ation<br>.ns) | Rain<br>(mm/hr) | Time-Peak<br>(mins) |
|-------|----------------------|-----------------|---------------------|
| 600   | Winter               | 3.16            | 384                 |
| 720   | Winter               | 2.76            | 448                 |
| 960   | Winter               | 2.24            | 576                 |
| 1440  | Winter               | 1.67            | 826                 |
| 2160  | Winter               | 1.24            | 1192                |
| 2880  | Winter               | 1.01            | 1540                |
| 4320  | Winter               | 0.75            | 2252                |
| 5760  | Winter               | 0.61            | 2952                |
| 7200  | Winter               | 0.52            | 3680                |
| 8640  | Winter               | 0.45            | 4416                |
| 10080 | Winter               | 0.40            | 5144                |

| Ove Arup & Partners Interna | Page 3                    |  |
|-----------------------------|---------------------------|--|
| The Arup Campus             | NFC                       |  |
| Blyth Gate                  | Car Park 3                |  |
| Solihull B90 8AE            |                           |  |
| Date 14/01/10               | Designed By CDH           |  |
| File NFC 30%CC.cas          | Checked By                |  |
| Micro Drainage              | Source Control W.11.4 net |  |

### Cascade Rainfall Details for car park 3 30%cc.src

| Region                | ENG+WAL | Cv (Summer)           | 0.750 | Summer Storms    | Yes |
|-----------------------|---------|-----------------------|-------|------------------|-----|
| Return Period (years) | 1       | Cv (Winter)           | 0.840 | Winter Storms    | Yes |
| M5-60 (mm)            | 19.400  | Shortest Storm (mins) | 15    | Climate Change % | +30 |
| Ratio-R               | 0.400   | Longest Storm (mins)  | 10080 |                  |     |

### Time / Area Diagram

### Total Area (ha) = 0.647

| Time  | (mins) | Area  | Time  | (mins) | Area  | Time  | (mins) | Area  |
|-------|--------|-------|-------|--------|-------|-------|--------|-------|
| from: | to:    | (ha)  | from: | to:    | (ha)  | from: | to:    | (ha)  |
| 0     | 4      | 0.176 | 4     | 8      | 0.235 | 8     | 12     | 0.236 |

| Ove Arup & Partners Internatio | Page 4                    |  |
|--------------------------------|---------------------------|--|
| The Arup Campus                | NFC                       |  |
| Blyth Gate                     | Car Park 3                |  |
| Solihull B90 8AE               |                           |  |
| Date 14/01/10                  | Designed By CDH           |  |
| File NFC 30%CC.cas             | Checked By                |  |
| Micro Drainage                 | Source Control W.11.4 net |  |

### Cascade Storage Controls for car park 3 30%cc.src

#### Porous Car Park Details

| Infil Coef - Base (m/hr)     | 0.000000 | Invert Level (m)        | 113.250 |
|------------------------------|----------|-------------------------|---------|
| Membrane Percolation (mm/hr) | 1000     | Cover Level (m)         | 114.000 |
| Safety Factor                | 2.0      | Slope (1:x)             | 150.0   |
| Porosity                     | 0.30     | Max Percolation (l/s)   | 483.1   |
| Length (m)                   | 37.0     | Depression Storage (mm) | 5       |
| Width (m)                    | 47.0     | Evaporation (mm/day)    | 3       |

#### Orifice Outflow Control

Diameter (m) 0.130 Discharge Coefficient 0.600 Invert Level (m) 113.400

#### Cascade Summary of Results for storage swale 7 30%cc.src

| Upstream   | Outflow To | Overflow To |
|------------|------------|-------------|
| Structures | 040110# 10 | 0001110# 10 |

(None) storage swale 3 30%.src (None)

Half Drain Time : 1 minutes

| Dura  | orm<br>tion<br>.ns) | Maximum<br>Control<br>(l/s) | Maximum<br>Filtration<br>(l/s) | Maximum<br>Outflow<br>(l/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m) | Maximum<br>Volume<br>(m³) | Status |
|-------|---------------------|-----------------------------|--------------------------------|-----------------------------|----------------------------------|-------------------------|---------------------------|--------|
| 15    | Summer              | 11.6                        | 0.0                            | 11.6                        | 117.5168                         | 0.1168                  | 1.3                       | ΟK     |
| 30    | Summer              | 11.5                        | 0.0                            | 11.5                        | 117.4967                         | 0.0968                  | 0.9                       | ΟK     |
| 60    | Summer              | 11.1                        | 0.0                            | 11.1                        | 117.4263                         | 0.0262                  | 0.1                       | ОК     |
| 120   | Summer              | 7.9                         | 0.0                            | 7.9                         | 117.4000                         | 0.0000                  | 0.0                       | ОК     |
| 180   | Summer              | 6.1                         | 0.0                            | 6.1                         | 117.4000                         | 0.0000                  | 0.0                       | ΟK     |
| 240   | Summer              | 5.1                         | 0.0                            | 5.1                         | 117.4000                         | 0.0000                  | 0.0                       | ΟK     |
| 360   | Summer              | 3.8                         | 0.0                            | 3.8                         | 117.4000                         | 0.0000                  | 0.0                       | ОК     |
| 480   | Summer              | 3.1                         | 0.0                            | 3.1                         | 117.4000                         | 0.0000                  | 0.0                       | ΟK     |
| 600   | Summer              | 2.6                         | 0.0                            | 2.6                         | 117.4000                         | 0.0000                  | 0.0                       | ΟK     |
| 720   | Summer              | 2.3                         | 0.0                            | 2.3                         | 117.4000                         | 0.0000                  | 0.0                       | ΟK     |
| 960   | Summer              | 1.8                         | 0.0                            | 1.8                         | 117.4000                         | 0.0000                  | 0.0                       | ΟK     |
| 1440  | Summer              | 1.4                         | 0.0                            | 1.4                         | 117.4000                         | 0.0000                  | 0.0                       | ΟK     |
| 2160  | Summer              | 1.0                         | 0.0                            | 1.0                         | 117.4000                         | 0.0000                  | 0.0                       | ΟK     |
| 2880  | Summer              | 0.8                         | 0.0                            | 0.8                         | 117.4000                         | 0.0000                  | 0.0                       | O K    |
| 4320  | Summer              | 0.6                         | 0.0                            | 0.6                         | 117.4000                         | 0.0000                  | 0.0                       | ΟK     |
|       | Summer              | 0.5                         | 0.0                            | 0.5                         | 117.4000                         | 0.0000                  | 0.0                       | O K    |
| 7200  | Summer              | 0.4                         | 0.0                            | 0.4                         | 117.4000                         | 0.0000                  | 0.0                       | O K    |
| 8640  | Summer              | 0.4                         | 0.0                            | 0.4                         | 117.4000                         | 0.0000                  | 0.0                       | O K    |
| 10080 | Summer              | 0.3                         | 0.0                            | 0.3                         | 117.4000                         | 0.0000                  | 0.0                       | O K    |
|       | Winter              | 11.7                        | 0.0                            | 11.7                        | 117.5228                         | 0.1228                  | 1.5                       | O K    |
| 30    | Winter              | 11.5                        | 0.0                            | 11.5                        | 117.4818                         | 0.0818                  | 0.6                       | ΟK     |
| 60    | Winter              | 9.4                         | 0.0                            | 9.4                         | 117.4000                         | 0.0000                  | 0.0                       | ΟK     |
| 120   | Winter              | 5.9                         | 0.0                            | 5.9                         | 117.4000                         | 0.0000                  | 0.0                       | O K    |
| 180   | Winter              | 4.5                         | 0.0                            | 4.5                         | 117.4000                         | 0.0000                  | 0.0                       | ОК     |
| 240   | Winter              | 3.7                         | 0.0                            | 3.7                         | 117.4000                         | 0.0000                  | 0.0                       | O K    |
| 360   | Winter              | 2.7                         | 0.0                            | 2.7                         | 117.4000                         | 0.0000                  | 0.0                       | O K    |
| 480   | Winter              | 2.2                         | 0.0                            | 2.2                         | 117.4000                         | 0.0000                  | 0.0                       | O K    |

| 15       Summer       39.03       12         30       Summer       25.41       19         60       Summer       16.08       34         120       Summer       9.97       0         180       Summer       7.50       0         240       Summer       6.13       0         360       Summer       4.58       0         480       Summer       3.72       0         600       Summer       3.16       0         720       Summer       2.76       0         960       Summer       1.67       0         2160       Summer       1.67       0         2160       Summer       1.67       0         2160       Summer       0.75       0         5760       Summer       0.61       0         4320       Summer       0.45       0         10080       Summer       0.45       0         10080       Summer       0.40       0         15       Winter       39.03       12         30       Winter       25.41       20         60       Winter       7.50       0 | Dura                                                                                                                                                                     | orm<br>ation<br>.ns)                                                                                                                                                                       | Rain<br>(mm/hr)                                                                                                                                                                                                 | Time-Peak<br>(mins)                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30<br>60<br>120<br>180<br>240<br>360<br>480<br>720<br>960<br>1440<br>2160<br>2880<br>4320<br>5760<br>7200<br>8640<br>10080<br>15<br>30<br>60<br>120<br>180<br>240<br>360 | Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Winter<br>Winter<br>Winter<br>Winter<br>Winter<br>Winter | $\begin{array}{c} 25.41\\ 16.08\\ 9.97\\ 7.50\\ 6.13\\ 4.58\\ 3.72\\ 3.16\\ 2.76\\ 2.24\\ 1.67\\ 1.24\\ 1.01\\ 0.75\\ 0.61\\ 0.52\\ 0.45\\ 0.40\\ 39.03\\ 25.41\\ 16.08\\ 9.97\\ 7.50\\ 6.13\\ 4.58\end{array}$ | 19<br>34<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |

| Ove Arup & Partners Internat | tional Ltd                | Page 2 |
|------------------------------|---------------------------|--------|
| The Arup Campus              | NFC                       |        |
| Blyth Gate                   | Storage Swale 7           |        |
| Solihull B90 8AE             |                           |        |
| Date 14/01/10                | Designed By CDH           |        |
| File NFC 30%CC.cas           | Checked By                |        |
| Micro Drainage               | Source Control W.11.4 net |        |

# Cascade Summary of Results for storage swale 7 30%cc.src

| Dura  | orm<br>tion<br>.ns) | Maximum<br>Control<br>(l/s) | Maximum<br>Filtration<br>(1/s) | Maximum<br>Outflow<br>(1/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m) | Maximum<br>Volume<br>(m³) | Status |
|-------|---------------------|-----------------------------|--------------------------------|-----------------------------|----------------------------------|-------------------------|---------------------------|--------|
| 600   | Winter              | 1.9                         | 0.0                            | 1.9                         | 117.4000                         | 0.0000                  | 0.0                       | ΟK     |
| 720   | Winter              | 1.6                         | 0.0                            | 1.6                         | 117.4000                         | 0.0000                  | 0.0                       | ОК     |
| 960   | Winter              | 1.3                         | 0.0                            | 1.3                         | 117.4000                         | 0.0000                  | 0.0                       | ΟK     |
| 1440  | Winter              | 1.0                         | 0.0                            | 1.0                         | 117.4000                         | 0.0000                  | 0.0                       | ОК     |
| 2160  | Winter              | 0.7                         | 0.0                            | 0.7                         | 117.4000                         | 0.0000                  | 0.0                       | ΟK     |
| 2880  | Winter              | 0.6                         | 0.0                            | 0.6                         | 117.4000                         | 0.0000                  | 0.0                       | ОК     |
| 4320  | Winter              | 0.4                         | 0.0                            | 0.4                         | 117.4000                         | 0.0000                  | 0.0                       | ΟK     |
| 5760  | Winter              | 0.4                         | 0.0                            | 0.4                         | 117.4000                         | 0.0000                  | 0.0                       | ОК     |
| 7200  | Winter              | 0.3                         | 0.0                            | 0.3                         | 117.4000                         | 0.0000                  | 0.0                       | ОК     |
| 8640  | Winter              | 0.3                         | 0.0                            | 0.3                         | 117.4000                         | 0.0000                  | 0.0                       | ΟK     |
| 10080 | Winter              | 0.2                         | 0.0                            | 0.2                         | 117.4000                         | 0.0000                  | 0.0                       | 0 K    |

| Dura  | orm<br>ation<br>.ns) | lon (mm/hr) (mi |   |
|-------|----------------------|-----------------|---|
| 600   | Winter               | 3.16            | 0 |
| 720   | Winter               | 2.76            | 0 |
| 960   | Winter               | 2.24            | 0 |
| 1440  | Winter               | 1.67            | 0 |
| 2160  | Winter               | 1.24            | 0 |
| 2880  | Winter               | 1.01            | 0 |
| 4320  | Winter               | 0.75            | 0 |
| 5760  | Winter               | 0.61            | 0 |
| 7200  | Winter               | 0.52            | 0 |
| 8640  | Winter               | 0.45            | 0 |
| 10080 | Winter               | 0.40            | 0 |

| Ove Arup & Partners Internation | al Ltd                    | Page 3 |
|---------------------------------|---------------------------|--------|
| The Arup Campus                 | NFC                       |        |
| Blyth Gate                      | Storage Swale 7           |        |
| Solihull B90 8AE                |                           |        |
| Date 14/01/10                   | Designed By CDH           |        |
| File NFC 30%CC.cas              | Checked By                |        |
| Micro Drainage                  | Source Control W.11.4 net |        |

### Cascade Rainfall Details for storage swale 7 30%cc.src

| Region                | ENG+WAL | Cv (Summer)           | 0.750 | Summer Storms    | Yes |
|-----------------------|---------|-----------------------|-------|------------------|-----|
| Return Period (years) | 1       | Cv (Winter)           | 0.840 | Winter Storms    | Yes |
| M5-60 (mm)            | 19.400  | Shortest Storm (mins) | 15    | Climate Change % | +30 |
| Ratio-R               | 0.400   | Longest Storm (mins)  | 10080 |                  |     |

Time / Area Diagram

Total Area (ha) = 0.101

| Time  | (mins) | Area |
|-------|--------|------|
| from: | to:    | (ha) |

0 4 0.101

| Ove Arup & Partners Internation | al Ltd                    | Page 4 |
|---------------------------------|---------------------------|--------|
| The Arup Campus                 | NFC                       |        |
| Blyth Gate                      | Storage Swale 7           |        |
| Solihull B90 8AE                |                           |        |
| Date 14/01/10                   | Designed By CDH           |        |
| File NFC 30%CC.cas              | Checked By                |        |
| Micro Drainage                  | Source Control W.11.4 net |        |

# Cascade Storage Controls for storage swale 7 30%cc.src

#### Swale Details

| Infil Coef - Base (m/hr)  | 0.000000 | Length (m)       | 140.0   |
|---------------------------|----------|------------------|---------|
| Infil Coef - Sides (m/hr) | 0.000000 | Side Slope (1:x) | 4.0     |
| Safety Factor             | 2.0      | Invert Level (m) | 117.400 |
| Porosity                  | 1.00     | Cover Level (m)  | 118.000 |
| Base Width (m)            | 1.0      | Slope (1:x)      | 150.0   |

### Pipe Outflow Control

| Pipe Diameter (m) | 0.100  | Roughness (mm)      | 0.600 | Invert Level ( | (m) 116.500 |
|-------------------|--------|---------------------|-------|----------------|-------------|
| Slope (1:x)       | 150.0  | Entry Loss Coef     | 0.500 |                |             |
| Length (m)        | 25.000 | Coef of Contraction | 0.600 |                |             |

| Ove Arup & Partners Internationa | Page 1                    |  |
|----------------------------------|---------------------------|--|
| The Arup Campus                  | NFC                       |  |
| Blyth Gate                       | Swale 3                   |  |
| Solihull B90 8AE                 | 800 Deep                  |  |
| Date 14/01/10                    | Designed By CDH           |  |
| File NFC 30%CC.cas               | Checked By                |  |
| Micro Drainage                   | Source Control W.11.4 net |  |

#### Cascade Summary of Results for storage swale 3 30%.src

| Upstream   |  |
|------------|--|
| Structures |  |

Outflow To

Overflow To

car park 3 30%cc.src storage swale 4 30%cc.src storage swale 4 30%cc.src cellular storage 30%cc.src car park 1 30%cc.src car park 2 30%cc.src storage swale 7 30%cc.src

| Dura | orm<br>ation<br>ins) | Maximum<br>Control<br>(1/s) | Maximum<br>Filtration<br>(l/s) | Maximum<br>Overflow<br>(1/s) | Maximum<br>Outflow<br>(1/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m) | Overflow<br>Volume<br>(m <sup>3</sup> ) | Maximum<br>Volume<br>(m³) | Status     |
|------|----------------------|-----------------------------|--------------------------------|------------------------------|-----------------------------|----------------------------------|-------------------------|-----------------------------------------|---------------------------|------------|
| 15   | Summer               | 40.7                        | 0.0                            | 0.0                          | 40.7                        | 110.8372                         | 0.3372                  | 0.0                                     | 185.7                     | ОК         |
| 30   | Summer               | 47.1                        | 0.0                            | 0.0                          | 47.1                        | 110.9187                         | 0.4187                  | 0.0                                     | 271.5                     | O K        |
| 60   | Summer               | 52.5                        | 0.0                            | 0.0                          | 52.5                        | 110.9947                         | 0.4947                  | 0.0                                     | 365.9                     | O K        |
| 120  | Summer               | 56.1                        | 0.0                            | 0.0                          | 56.1                        | 111.0508                         | 0.5507                  | 0.0                                     | 444.2                     | O K        |
| 180  | Summer               | 57.0                        | 0.0                            | 0.0                          | 57.0                        | 111.0662                         | 0.5662                  | 0.0                                     | 467.5                     | O K        |
| 240  | Summer               | 57.4                        | 0.0                            | 0.0                          | 57.4                        | 111.0727                         | 0.5727                  | 0.0                                     | 477.4                     | O K        |
| 360  | Summer               | 57.4                        | 0.0                            | 0.0                          | 57.4                        | 111.0727                         | 0.5727                  | 0.0                                     | 477.1                     | O K        |
| 480  | Summer               | 56.8                        | 0.0                            | 0.0                          | 56.8                        | 111.0628                         | 0.5627                  | 0.0                                     | 462.3                     | O K        |
| 600  | Summer               | 56.0                        | 0.0                            | 0.0                          | 56.0                        | 111.0502                         | 0.5502                  | 0.0                                     | 443.3                     | O K        |
| 720  | Summer               | 55.1                        | 0.0                            | 0.0                          | 55.1                        | 111.0358                         | 0.5357                  | 0.0                                     | 422.9                     | O K        |
| 960  | Summer               | 53.2                        | 0.0                            | 0.0                          | 53.2                        | 111.0067                         | 0.5067                  | 0.0                                     | 382.0                     | O K        |
| 1440 | Summer               | 49.4                        | 0.0                            | 0.0                          | 49.4                        | 110.9507                         | 0.4507                  | 0.0                                     | 309.8                     | O K        |
|      | Summer               | 44.4                        | 0.0                            | 0.0                          | 44.4                        | 110.8822                         | 0.3822                  | 0.0                                     | 230.8                     | O K        |
| 2880 | Summer               | 40.1                        | 0.0                            | 0.0                          | 40.1                        | 110.8302                         | 0.3302                  | 0.0                                     | 179.1                     | O K        |
|      | Summer               | 33.3                        | 0.0                            | 0.0                          | 33.3                        | 110.7702                         | 0.2702                  | 0.0                                     | 126.9                     | O K        |
|      | Summer               | 27.8                        | 0.0                            | 0.0                          | 27.8                        | 110.7387                         | 0.2387                  | 0.0                                     | 103.1                     | O K        |
|      | Summer               | 24.1                        | 0.0                            | 0.0                          | 24.1                        | 110.7168                         | 0.2168                  | 0.0                                     | 88.0                      | O K        |
|      | Summer               | 21.3                        | 0.0                            | 0.0                          | 21.3                        | 110.7008                         | 0.2008                  | 0.0                                     | 77.4                      | O K        |
|      | Summer               | 19.1                        | 0.0                            | 0.0                          | 19.1                        | 110.6872                         | 0.1873                  | 0.0                                     | 69.4                      | O K        |
| 15   | Winter               | 43.6                        | 0.0                            | 0.0                          | 43.6                        | 110.8722                         | 0.3722                  | 0.0                                     | 220.3                     | O K        |
|      | Winter               | 50.0                        | 0.0                            | 0.0                          | 50.0                        | 110.9592                         | 0.4592                  | 0.0                                     | 319.8                     | O K        |
|      | Winter               | 55.3                        | 0.0                            | 0.0                          | 55.3                        | 111.0387                         | 0.5387                  | 0.0                                     | 426.8                     | O K        |
|      | Winter               | 59.0                        | 0.0                            | 0.0                          | 59.0                        | 111.0998                         | 0.5998                  | 0.0                                     | 519.3                     | O K        |
|      | Winter               | 60.0                        | 0.0                            | 0.0                          | 60.0                        | 111.1162                         | 0.6163                  | 0.0                                     | 545.5                     | FLOOD RISK |
| 240  | Winter               | 60.1                        | 0.0                            | 0.0                          | 60.1                        | 111.1188                         | 0.6188                  | 0.0                                     | 550.1                     | FLOOD RISK |

| Dura                 | Storm<br>Duration<br>(mins) |                         | Time-Peak<br>(mins)  |
|----------------------|-----------------------------|-------------------------|----------------------|
| 30<br>60             | Summer                      | 39.03<br>25.41<br>16.08 | 48<br>60<br>82       |
| 120<br>180<br>240    | Summer                      | 9.97<br>7.50<br>6.13    | 128<br>166<br>198    |
| 360<br>480<br>600    | Summer                      | 4.58<br>3.72<br>3.16    | 264<br>330<br>396    |
| 720<br>960<br>1440   |                             | 2.76<br>2.24<br>1.67    | 460<br>588<br>834    |
| 2160<br>2880<br>4320 | Summer                      | 1.24<br>1.01<br>0.75    | 1192<br>1544<br>2252 |
| 5760<br>7200<br>8640 | Summer<br>Summer            | 0.61<br>0.52<br>0.45    | 2960<br>3688<br>4416 |
| 10080<br>15          |                             | 0.40<br>39.03<br>25.41  | 5144<br>50<br>62     |
| 60<br>120            | Winter<br>Winter<br>Winter  | 16.08<br>9.97<br>7.50   | 84<br>128<br>176     |
|                      | Winter                      | 6.13                    | 208                  |

#### Half Drain Time : 89 minutes

| Ove Arup & Partners Interna | Page 2                    |  |
|-----------------------------|---------------------------|--|
| The Arup Campus             | NFC                       |  |
| Blyth Gate                  | Swale 3                   |  |
| Solihull B90 8AE            | 800 Deep                  |  |
| Date 14/01/10               | Designed By CDH           |  |
| File NFC 30%CC.cas          | Checked By                |  |
| Micro Drainage              | Source Control W.11.4 net |  |

# Cascade Summary of Results for storage swale 3 30%.src

| Storm<br>Duration<br>(mins) | Maximum<br>Control<br>(1/s) | Maximum<br>Filtration<br>(l/s) | Maximum<br>Overflow<br>(1/s) | Maximum<br>Outflow<br>(l/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m) | Overflow<br>Volume<br>(m <sup>3</sup> ) | Maximum<br>Volume<br>(m <sup>3</sup> ) | Status     |
|-----------------------------|-----------------------------|--------------------------------|------------------------------|-----------------------------|----------------------------------|-------------------------|-----------------------------------------|----------------------------------------|------------|
| 360 Winter                  | 59.7                        | 0.0                            | 0.0                          | 59.7                        | 111.1107                         | 0.6108                  | 0.0                                     | 536.5                                  | FLOOD RISK |
| 480 Winter                  | 58.5                        | 0.0                            | 0.0                          | 58.5                        | 111.0908                         | 0.5908                  | 0.0                                     | 505.0                                  | O K        |
| 600 Winter                  | 57.1                        | 0.0                            | 0.0                          | 57.1                        | 111.0677                         | 0.5677                  | 0.0                                     | 469.5                                  | O K        |
| 720 Winter                  | 55.6                        | 0.0                            | 0.0                          | 55.6                        | 111.0437                         | 0.5437                  | 0.0                                     | 433.9                                  | O K        |
| 960 Winter                  | 52.6                        | 0.0                            | 0.0                          | 52.6                        | 110.9962                         | 0.4962                  | 0.0                                     | 367.7                                  | O K        |
| 1440 Winter                 | 46.7                        | 0.0                            | 0.0                          | 46.7                        | 110.9127                         | 0.4127                  | 0.0                                     | 264.5                                  | O K        |
| 2160 Winter                 | 39.4                        | 0.0                            | 0.0                          | 39.4                        | 110.8227                         | 0.3227                  | 0.0                                     | 171.9                                  | O K        |
| 2880 Winter                 | 33.7                        | 0.0                            | 0.0                          | 33.7                        | 110.7728                         | 0.2727                  | 0.0                                     | 129.2                                  | O K        |
| 4320 Winter                 | 25.6                        | 0.0                            | 0.0                          | 25.6                        | 110.7258                         | 0.2258                  | 0.0                                     | 93.8                                   | O K        |
| 5760 Winter                 | 20.8                        | 0.0                            | 0.0                          | 20.8                        | 110.6978                         | 0.1978                  | 0.0                                     | 75.7                                   | 0 K        |
| 7200 Winter                 | 17.7                        | 0.0                            | 0.0                          | 17.7                        | 110.6793                         | 0.1793                  | 0.0                                     | 64.5                                   | O K        |
| 8640 Winter                 | 15.5                        | 0.0                            | 0.0                          | 15.5                        | 110.6657                         | 0.1658                  | 0.0                                     | 56.9                                   | O K        |
| 10080 Winter                | 13.8                        | 0.0                            | 0.0                          | 13.8                        | 110.6543                         | 0.1543                  | 0.0                                     | 51.0                                   | O K        |

| Storm<br>Duration<br>(mins) |        | Rain<br>(mm/hr) | Time-Peak<br>(mins) |
|-----------------------------|--------|-----------------|---------------------|
| 360                         | Winter | 4.58            | 280                 |
| 480                         | Winter | 3.72            | 352                 |
| 600                         | Winter | 3.16            | 420                 |
| 720                         | Winter | 2.76            | 488                 |
| 960                         | Winter | 2.24            | 618                 |
| 1440                        | Winter | 1.67            | 860                 |
| 2160                        | Winter | 1.24            | 1208                |
| 2880                        | Winter | 1.01            | 1544                |
| 4320                        | Winter | 0.75            | 2252                |
| 5760                        | Winter | 0.61            | 2952                |
| 7200                        | Winter | 0.52            | 3680                |
| 8640                        | Winter | 0.45            | 4408                |
| 10080                       | Winter | 0.40            | 5144                |

| l Ltd                     | Page 3                                               |
|---------------------------|------------------------------------------------------|
| NFC                       |                                                      |
| Swale 3                   |                                                      |
| 800 Deep                  |                                                      |
| Designed By CDH           |                                                      |
| Checked By                |                                                      |
| Source Control W.11.4 net |                                                      |
|                           | Swale 3<br>800 Deep<br>Designed By CDH<br>Checked By |

### Cascade Rainfall Details for storage swale 3 30%.src

| Region                | ENG+WAL | Cv (Summer           | ) 0.750 | Summer Storms    | Yes |
|-----------------------|---------|----------------------|---------|------------------|-----|
| Return Period (years) | 1       | Cv (Winter           | ) 0.840 | Winter Storms    | Yes |
| M5-60 (mm)            | 19.400  | Shortest Storm (mins | ) 15    | Climate Change % | +30 |
| Ratio-R               | 0.400   | Longest Storm (mins  | ) 10080 |                  |     |

### Time / Area Diagram

#### Total Area (ha) = 1.352

| Time  | (mins) | Area  | Time  | (mins) | Area  | Time  | (mins) | Area  |
|-------|--------|-------|-------|--------|-------|-------|--------|-------|
| from: | to:    | (ha)  | from: | to:    | (ha)  | from: | to:    | (ha)  |
| 0     | 4      | 0.000 | 4     | 8      | 0.676 | 8     | 12     | 0.676 |

| Ove Arup & Partners Intern | Page 4                    |  |
|----------------------------|---------------------------|--|
| The Arup Campus            | NFC                       |  |
| Blyth Gate                 | Swale 3                   |  |
| Solihull B90 8AE           | 800 Deep                  |  |
| Date 14/01/10              | Designed By CDH           |  |
| File NFC 30%CC.cas         | Checked By                |  |
| Micro Drainage             | Source Control W.11.4 net |  |

#### Cascade Storage Controls for storage swale 3 30%.src

#### Swale Details

| Infil Coef - Base (m/hr)  | 0.000000 | Length (m)       | 300.0    |
|---------------------------|----------|------------------|----------|
| Infil Coef - Sides (m/hr) | 0.00000  | Side Slope (1:x) | 4.0      |
| Safety Factor             | 2.0      | Invert Level (m) | 110.500  |
| Porosity                  | 1.00     | Cover Level (m)  | 111.300  |
| Base Width (m)            | 0.5      | Slope (1:x)      | 100000.0 |

#### Orifice Outflow Control

Diameter (m) 0.200 Discharge Coefficient 0.600 Invert Level (m) 110.500

### Weir / Flume Overflow Control

Discharge Coef 0.544 Width (m) 6.000 Crest Level (m) 111.150

| Ove Arup & Partners Internatio | onal Ltd                  | Page 1 |
|--------------------------------|---------------------------|--------|
| The Arup Campus                | NFC                       |        |
| Blyth Gate                     | Swale 4                   |        |
| Solihull B90 8AE               | 800 Deep                  |        |
| Date 14/01/10                  | Designed By CDH           |        |
| File NFC 30%CC.cas             | Checked By                |        |
| Micro Drainage                 | Source Control W.11.4 net |        |

#### Cascade Summary of Results for storage swale 4 30%cc.src

| Upstream   | Outflow To |
|------------|------------|
| Structures | Outliow 10 |

Overflow To

storage swale 3 30%.src storage swale 5 30%cc.src storage swale 5 30%cc.src cellular storage 30%cc.src car park 1 30%cc.src car park 2 30%cc.src storage swale 7 30%cc.src

#### Half Drain Time : 175 minutes

| Dura  | orm<br>ation<br>.ns) | Maximum<br>Control<br>(l/s) | Maximum<br>Filtration<br>(l/s) | Maximum<br>Overflow<br>(1/s) | Maximum<br>Outflow<br>(1/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m) | Overflow<br>Volume<br>(m <sup>3</sup> ) | Maximum<br>Volume<br>(m³) | Status |
|-------|----------------------|-----------------------------|--------------------------------|------------------------------|-----------------------------|----------------------------------|-------------------------|-----------------------------------------|---------------------------|--------|
| 15    | Summer               | 19.7                        | 0.0                            | 0.0                          | 19.7                        | 109.2513                         | 0.2512                  | 0.0                                     | 149.3                     | ОК     |
| 30    | Summer               | 22.8                        | 0.0                            | 0.0                          | 22.8                        | 109.3107                         | 0.3107                  | 0.0                                     | 214.4                     | ОК     |
| 60    | Summer               | 25.5                        | 0.0                            | 0.0                          | 25.5                        | 109.3692                         | 0.3692                  | 0.0                                     | 289.2                     | ОК     |
| 120   | Summer               | 27.8                        | 0.0                            | 0.0                          | 27.8                        | 109.4252                         | 0.4252                  | 0.0                                     | 371.2                     | ОК     |
| 180   | Summer               | 29.0                        | 0.0                            | 0.0                          | 29.0                        | 109.4567                         | 0.4567                  | 0.0                                     | 422.1                     | ОК     |
| 240   | Summer               | 29.8                        | 0.0                            | 0.0                          | 29.8                        | 109.4782                         | 0.4782                  | 0.0                                     | 458.1                     | ОК     |
| 360   | Summer               | 30.8                        | 0.0                            | 0.0                          | 30.8                        | 109.5042                         | 0.5042                  | 0.0                                     | 503.9                     | ОК     |
| 480   | Summer               | 31.2                        | 0.0                            | 0.0                          | 31.2                        | 109.5167                         | 0.5167                  | 0.0                                     | 526.5                     | ОК     |
| 600   | Summer               | 31.4                        | 0.0                            | 0.0                          | 31.4                        | 109.5212                         | 0.5212                  | 0.0                                     | 535.5                     | ОК     |
| 720   | Summer               | 31.4                        | 0.0                            | 0.0                          | 31.4                        | 109.5212                         | 0.5212                  | 0.0                                     | 535.0                     | ОК     |
| 960   | Summer               | 31.2                        | 0.0                            | 0.0                          | 31.2                        | 109.5172                         | 0.5172                  | 0.0                                     | 528.0                     | ОК     |
| 1440  | Summer               | 30.8                        | 0.0                            | 0.0                          | 30.8                        | 109.5037                         | 0.5037                  | 0.0                                     | 503.3                     | ОК     |
| 2160  | Summer               | 29.7                        | 0.0                            | 0.0                          | 29.7                        | 109.4752                         | 0.4752                  | 0.0                                     | 452.6                     | ОК     |
| 2880  | Summer               | 28.4                        | 0.0                            | 0.0                          | 28.4                        | 109.4407                         | 0.4407                  | 0.0                                     | 395.5                     | ОК     |
| 4320  | Summer               | 25.6                        | 0.0                            | 0.0                          | 25.6                        | 109.3732                         | 0.3732                  | 0.0                                     | 294.5                     | ОК     |
| 5760  | Summer               | 23.2                        | 0.0                            | 0.0                          | 23.2                        | 109.3192                         | 0.3192                  | 0.0                                     | 224.7                     | ΟK     |
| 7200  | Summer               | 21.2                        | 0.0                            | 0.0                          | 21.2                        | 109.2783                         | 0.2782                  | 0.0                                     | 177.2                     | ОК     |
| 8640  | Summer               | 19.4                        | 0.0                            | 0.0                          | 19.4                        | 109.2462                         | 0.2462                  | 0.0                                     | 144.3                     | ОК     |
| 10080 | Summer               | 18.0                        | 0.0                            | 0.0                          | 18.0                        | 109.2223                         | 0.2223                  | 0.0                                     | 121.8                     | ОК     |
| 15    | Winter               | 21.1                        | 0.0                            | 0.0                          | 21.1                        | 109.2762                         | 0.2762                  | 0.0                                     | 175.3                     | ΟK     |
| 30    | Winter               | 24.1                        | 0.0                            | 0.0                          | 24.1                        | 109.3387                         | 0.3387                  | 0.0                                     | 249.0                     | ОК     |
| 60    | Winter               | 26.8                        | 0.0                            | 0.0                          | 26.8                        | 109.3997                         | 0.3997                  | 0.0                                     | 332.4                     | ОК     |
| 120   | Winter               | 29.1                        | 0.0                            | 0.0                          | 29.1                        | 109.4582                         | 0.4582                  | 0.0                                     | 424.5                     | ОК     |
| 180   | Winter               | 30.3                        | 0.0                            | 0.0                          | 30.3                        | 109.4917                         | 0.4917                  | 0.0                                     | 481.7                     | O K    |

| Storm<br>Duration<br>(mins)                                             |                                                          | Rain<br>(mm/hr)                                                                                                       | Time-Peak<br>(mins)                                                                     |
|-------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 15<br>30<br>60<br>120<br>180<br>240<br>360<br>480<br>600                | Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer | 39.03<br>25.41<br>16.08<br>9.97<br>7.50<br>6.13<br>4.58<br>3.72<br>3.16<br>2.76<br>2.24<br>1.67                       | 143<br>181<br>230<br>296<br>348<br>394<br>478<br>554<br>628<br>690<br>806<br>1044       |
| 2160<br>2880<br>4320<br>5760<br>7200<br>8640<br>10080<br>15<br>30<br>60 | Summer<br>Summer<br>Summer<br>Summer                     | $\begin{array}{c} 1.24\\ 1.01\\ 0.75\\ 0.61\\ 0.52\\ 0.45\\ 0.40\\ 39.03\\ 25.41\\ 16.08\\ 9.97\\ 7.50\\ \end{array}$ | 1400<br>1748<br>2452<br>3160<br>3856<br>4560<br>5264<br>155<br>197<br>250<br>318<br>372 |

| Ove Arup & Partners Internation | Page 2                    |   |
|---------------------------------|---------------------------|---|
| The Arup Campus                 | NFC                       |   |
| Blyth Gate                      | Swale 4                   |   |
| Solihull B90 8AE                | 800 Deep                  |   |
| Date 14/01/10                   | Designed By CDH           |   |
| File NFC 30%CC.cas              | Checked By                |   |
| Micro Drainage                  | Source Control W.11.4 net | • |

### Cascade Summary of Results for storage swale 4 30%cc.src

| Dura  | orm<br>ation<br>ins) | Maximum<br>Control<br>(1/s) | Maximum<br>Filtration<br>(l/s) | Maximum<br>Overflow<br>(1/s) | Maximum<br>Outflow<br>(1/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m) | Overflow<br>Volume<br>(m <sup>3</sup> ) | Maximum<br>Volume<br>(m³) | Status |
|-------|----------------------|-----------------------------|--------------------------------|------------------------------|-----------------------------|----------------------------------|-------------------------|-----------------------------------------|---------------------------|--------|
| 240   | Winter               | 31.1                        | 0.0                            | 0.0                          | 31.1                        | 109.5142                         | 0.5142                  | 0.0                                     | 522.6                     | ΟK     |
| 360   | Winter               | 32.1                        | 0.0                            | 0.0                          | 32.1                        | 109.5423                         | 0.5422                  | 0.0                                     | 574.8                     | ΟK     |
| 480   | Winter               | 32.6                        | 0.0                            | 0.0                          | 32.6                        | 109.5557                         | 0.5557                  | 0.0                                     | 601.7                     | ΟK     |
| 600   | Winter               | 32.8                        | 0.0                            | 0.0                          | 32.8                        | 109.5618                         | 0.5617                  | 0.0                                     | 613.7                     | ΟK     |
| 720   | Winter               | 32.8                        | 0.0                            | 0.0                          | 32.8                        | 109.5622                         | 0.5623                  | 0.0                                     | 614.1                     | ОК     |
| 960   | Winter               | 32.5                        | 0.0                            | 0.0                          | 32.5                        | 109.5532                         | 0.5532                  | 0.0                                     | 596.3                     | ОК     |
| 1440  | Winter               | 31.5                        | 0.0                            | 0.0                          | 31.5                        | 109.5257                         | 0.5257                  | 0.0                                     | 543.6                     | ОК     |
| 2160  | Winter               | 29.5                        | 0.0                            | 0.0                          | 29.5                        | 109.4692                         | 0.4692                  | 0.0                                     | 442.6                     | ОК     |
| 2880  | Winter               | 27.2                        | 0.0                            | 0.0                          | 27.2                        | 109.4102                         | 0.4102                  | 0.0                                     | 348.6                     | ОК     |
| 4320  | Winter               | 23.1                        | 0.0                            | 0.0                          | 23.1                        | 109.3167                         | 0.3167                  | 0.0                                     | 221.4                     | ОК     |
| 5760  | Winter               | 19.8                        | 0.0                            | 0.0                          | 19.8                        | 109.2533                         | 0.2532                  | 0.0                                     | 151.3                     | ОК     |
| 7200  | Winter               | 17.5                        | 0.0                            | 0.0                          | 17.5                        | 109.2138                         | 0.2138                  | 0.0                                     | 113.9                     | ОК     |
| 8640  | Winter               | 15.3                        | 0.0                            | 0.0                          | 15.3                        | 109.1947                         | 0.1948                  | 0.0                                     | 98.0                      | ОК     |
| 10080 | Winter               | 13.8                        | 0.0                            | 0.0                          | 13.8                        | 109.1807                         | 0.1808                  | 0.0                                     | 86.7                      | ОК     |

| Storm<br>Duration<br>(mins) |        | Rain<br>(mm/hr) | Time-Peak<br>(mins) |
|-----------------------------|--------|-----------------|---------------------|
| 240                         | Winter | 6.13            | 418                 |
| 360                         | Winter | 4.58            | 502                 |
| 480                         | Winter | 3.72            | 580                 |
| 600                         | Winter | 3.16            | 654                 |
| 720                         | Winter | 2.76            | 726                 |
| 960                         | Winter | 2.24            | 844                 |
| 1440                        | Winter | 1.67            | 1086                |
| 2160                        | Winter | 1.24            | 1436                |
| 2880                        | Winter | 1.01            | 1792                |
| 4320                        | Winter | 0.75            | 2488                |
| 5760                        | Winter | 0.61            | 3176                |
| 7200                        | Winter | 0.52            | 3816                |
| 8640                        | Winter | 0.45            | 4544                |
| 10080                       | Winter | 0.40            | 5272                |

| Ove Arup & Partners Internationa | al Ltd                    | Page 3  |
|----------------------------------|---------------------------|---------|
| The Arup Campus                  | NFC                       |         |
| Blyth Gate                       | Swale 4                   |         |
| Solihull B90 8AE                 | 800 Deep                  |         |
| Date 14/01/10                    | Designed By CDH           | DENTERE |
| File NFC 30%CC.cas               | Checked By                |         |
| Micro Drainage                   | Source Control W.11.4 net | ·       |

### Cascade Rainfall Details for storage swale 4 30%cc.src

| Region                | ENG+WAL | Cv (Summer)           | 0.750 | Summer Storms    | Yes |
|-----------------------|---------|-----------------------|-------|------------------|-----|
| Return Period (years) | 1       | Cv (Winter)           | 0.840 | Winter Storms    | Yes |
| M5-60 (mm)            | 19.400  | Shortest Storm (mins) | 15    | Climate Change % | +30 |
| Ratio-R               | 0.400   | Longest Storm (mins)  | 10080 |                  |     |

### Time / Area Diagram

Total Area (ha) = 0.000

| Time  | (mins) | Area |
|-------|--------|------|
| from: | to:    | (ha) |

0 4 0.000

| Ove Arup & Partners Internat. | ional Ltd                 | Page 4 |
|-------------------------------|---------------------------|--------|
| The Arup Campus               | NFC                       |        |
| Blyth Gate                    | Swale 4                   |        |
| Solihull B90 8AE              | 800 Deep                  |        |
| Date 14/01/10                 | Designed By CDH           |        |
| File NFC 30%CC.cas            | Checked By                |        |
| Micro Drainage                | Source Control W.11.4 net | ·      |

#### Cascade Storage Controls for storage swale 4 30%cc.src

#### Swale Details

| Infil Coef - Base (m/hr)  | 0.000000 | Length (m)       | 400.0    |
|---------------------------|----------|------------------|----------|
| Infil Coef - Sides (m/hr) | 0.00000  | Side Slope (1:x) | 4.0      |
| Safety Factor             | 2.0      | Invert Level (m) | 109.000  |
| Porosity                  | 1.00     | Cover Level (m)  | 109.800  |
| Base Width (m)            | 0.5      | Slope (1:x)      | 100000.0 |

#### Orifice Outflow Control

Diameter (m) 0.150 Discharge Coefficient 0.600 Invert Level (m) 109.000

# Weir / Flum<u>e Overflow Control</u>

Discharge Coef 0.544 Width (m) 3.500 Crest Level (m) 109.650

| Ove Arup & Partners Internation | nal Ltd                   | Page 1 |
|---------------------------------|---------------------------|--------|
| The Arup Campus                 | NFC                       |        |
| Blyth Gate                      | Swale 5                   |        |
| Solihull B90 8AE                | 800 Deep                  |        |
| Date 14/01/10                   | Designed By CDH           |        |
| File NFC 30%CC.cas              | Checked By                |        |
| Micro Drainage                  | Source Control W.11.4 net |        |

#### Cascade Summary of Results for storage swale 5 30%cc.src

| Upstream   |  |
|------------|--|
| Structures |  |

Outflow To

Overflow To

storage swale 4 30%cc.src storage swale 6 30%cc.src storage swale 6 30%cc.src
car park 3 30%cc.src
car park 1 30%cc.src
car park 1 30%cc.src
storage swale 7 30%cc.src

#### Half Drain Time : 449 minutes

| Dura  | orm<br>ation<br>.ns) | Maximum<br>Control<br>(1/s) | Maximum<br>Filtration<br>(1/s) | Maximum<br>Overflow<br>(1/s) | Maximum<br>Outflow<br>(1/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m) | Overflow<br>Volume<br>(m <sup>3</sup> ) | Maximum<br>Volume<br>(m³) | Status     |
|-------|----------------------|-----------------------------|--------------------------------|------------------------------|-----------------------------|----------------------------------|-------------------------|-----------------------------------------|---------------------------|------------|
| 15    | Summer               | 9.7                         | 0.0                            | 0.0                          | 9.7                         | 107.7642                         | 0.2642                  | 0.0                                     | 155.0                     | ОК         |
| 30    | Summer               | 11.0                        | 0.0                            | 0.0                          | 11.0                        | 107.8292                         | 0.3292                  | 0.0                                     | 226.3                     | O K        |
| 60    | Summer               | 12.2                        | 0.0                            | 0.0                          | 12.2                        | 107.8922                         | 0.3922                  | 0.0                                     | 307.6                     | O K        |
| 120   | Summer               | 13.3                        | 0.0                            | 0.0                          | 13.3                        | 107.9542                         | 0.4542                  | 0.0                                     | 398.9                     | O K        |
| 180   | Summer               | 13.9                        | 0.0                            | 0.0                          | 13.9                        | 107.9907                         | 0.4907                  | 0.0                                     | 458.3                     | O K        |
| 240   | Summer               | 14.3                        | 0.0                            | 0.0                          | 14.3                        | 108.0167                         | 0.5167                  | 0.0                                     | 503.2                     | O K        |
| 360   | Summer               | 14.8                        | 0.0                            | 0.0                          | 14.8                        | 108.0522                         | 0.5522                  | 0.0                                     | 568.0                     | O K        |
| 480   | Summer               | 15.1                        | 0.0                            | 0.0                          | 15.1                        | 108.0752                         | 0.5753                  | 0.0                                     | 612.2                     | O K        |
| 600   | Summer               | 15.4                        | 0.0                            | 0.0                          | 15.4                        | 108.0928                         | 0.5928                  | 0.0                                     | 645.8                     | O K        |
| 720   | Summer               | 15.6                        | 0.0                            | 0.0                          | 15.6                        | 108.1053                         | 0.6053                  | 0.0                                     | 671.8                     | FLOOD RISK |
| 960   | Summer               | 15.8                        | 0.0                            | 0.0                          | 15.8                        | 108.1228                         | 0.6228                  | 0.0                                     | 707.6                     | FLOOD RISK |
| 1440  | Summer               | 16.0                        | 0.0                            | 0.0                          | 16.0                        | 108.1363                         | 0.6363                  | 0.0                                     | 735.5                     | FLOOD RISK |
| 2160  | Summer               | 15.9                        | 0.0                            | 0.0                          | 15.9                        | 108.1308                         | 0.6308                  | 0.0                                     | 724.7                     | FLOOD RISK |
| 2880  | Summer               | 15.8                        | 0.0                            | 0.0                          | 15.8                        | 108.1213                         | 0.6213                  | 0.0                                     | 704.2                     | FLOOD RISK |
| 4320  | Summer               | 15.4                        | 0.0                            | 0.0                          | 15.4                        | 108.0928                         | 0.5928                  | 0.0                                     | 645.9                     | O K        |
| 5760  | Summer               | 14.9                        | 0.0                            | 0.0                          | 14.9                        | 108.0567                         | 0.5567                  | 0.0                                     | 576.7                     | O K        |
| 7200  | Summer               | 14.3                        | 0.0                            | 0.0                          | 14.3                        | 108.0187                         | 0.5187                  | 0.0                                     | 507.2                     | O K        |
| 8640  | Summer               | 13.7                        | 0.0                            | 0.0                          | 13.7                        | 107.9817                         | 0.4817                  | 0.0                                     | 443.4                     | O K        |
| 10080 | Summer               | 13.2                        | 0.0                            | 0.0                          | 13.2                        | 107.9472                         | 0.4472                  | 0.0                                     | 388.4                     | O K        |
| 15    | Winter               | 10.3                        | 0.0                            | 0.0                          | 10.3                        | 107.7917                         | 0.2917                  | 0.0                                     | 183.5                     | O K        |
| 30    | Winter               | 11.6                        | 0.0                            | 0.0                          | 11.6                        | 107.8592                         | 0.3592                  | 0.0                                     | 263.5                     | O K        |
| 60    | Winter               | 12.8                        | 0.0                            | 0.0                          | 12.8                        | 107.9247                         | 0.4247                  | 0.0                                     | 354.2                     | O K        |
| 120   | Winter               | 13.8                        | 0.0                            | 0.0                          | 13.8                        | 107.9892                         | 0.4892                  | 0.0                                     | 456.3                     | O K        |
| 180   | Winter               | 14.4                        | 0.0                            | 0.0                          | 14.4                        | 108.0277                         | 0.5277                  | 0.0                                     | 522.8                     | O K        |

| Storm<br>Duration<br>(mins)                                                                                                             |                                                                                                                                                    | Rain<br>(mm/hr)                                                                                                                                 | Time-Peak<br>(mins)                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| 15<br>30<br>60<br>120<br>180<br>240<br>360<br>480<br>600<br>720<br>960<br>1440<br>2160<br>2880<br>4320<br>5760<br>7200<br>8640<br>10080 | Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer | 39.03<br>25.41<br>16.08<br>9.97<br>7.50<br>6.13<br>4.58<br>3.72<br>3.16<br>2.24<br>1.67<br>1.24<br>1.01<br>0.75<br>0.61<br>0.52<br>0.45<br>0.40 | 317<br>391<br>482<br>590<br>668<br>732<br>838<br>928<br>1010<br>1090<br>1242<br>1530<br>1880<br>2228<br>2940<br>3648<br>4344<br>5048<br>5760 |
| 30<br>60                                                                                                                                | Winter<br>Winter<br>Winter<br>Winter<br>Winter                                                                                                     | 39.03<br>25.41<br>16.08<br>9.97<br>7.50                                                                                                         | 343<br>426<br>522<br>638<br>718                                                                                                              |

| Ove Arup & Partners Internationa | l Ltd                     | Page 2   |
|----------------------------------|---------------------------|----------|
| The Arup Campus                  | NFC                       |          |
| Blyth Gate                       | Swale 5                   |          |
| Solihull B90 8AE                 | 800 Deep                  |          |
| Date 14/01/10                    | Designed By CDH           | Dentreme |
| File NFC 30%CC.cas               | Checked By                |          |
| Micro Drainage                   | Source Control W.11.4 net |          |

# Cascade Summary of Results for storage swale 5 30%cc.src

| Storm<br>Duration<br>(mins) | Maximum<br>Control<br>(1/s) | Maximum<br>Filtration<br>(l/s) | Maximum<br>Overflow<br>(1/s) | Maximum<br>Outflow<br>(1/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m) | Overflow<br>Volume<br>(m <sup>3</sup> ) | Maximum<br>Volume<br>(m³) | Status     |
|-----------------------------|-----------------------------|--------------------------------|------------------------------|-----------------------------|----------------------------------|-------------------------|-----------------------------------------|---------------------------|------------|
| 240 Winter                  | 14.8                        | 0.0                            | 0.0                          | 14.8                        | 108.0553                         | 0.5552                  | 0.0                                     | 573.2                     | ОК         |
| 360 Winter                  | 15.4                        | 0.0                            | 0.0                          | 15.4                        | 108.0928                         | 0.5928                  | 0.0                                     | 646.3                     | O K        |
| 480 Winter                  | 15.7                        | 0.0                            | 0.0                          | 15.7                        | 108.1173                         | 0.6173                  | 0.0                                     | 696.5                     | FLOOD RISK |
| 600 Winter                  | 16.0                        | 0.0                            | 0.0                          | 16.0                        | 108.1358                         | 0.6358                  | 0.0                                     | 735.2                     | FLOOD RISK |
| 720 Winter                  | 16.2                        | 0.0                            | 0.0                          | 16.2                        | 108.1503                         | 0.6503                  | 0.0                                     | 765.8                     | FLOOD RISK |
| 960 Winter                  | 16.3                        | 0.0                            | 3.8                          | 20.1                        | 108.1608                         | 0.6608                  | 29.9                                    | 789.5                     | FLOOD RISK |
| 1440 Winter                 | 16.4                        | 0.0                            | 6.4                          | 22.8                        | 108.1653                         | 0.6653                  | 68.8                                    | 798.5                     | FLOOD RISK |
| 2160 Winter                 | 16.3                        | 0.0                            | 4.6                          | 21.0                        | 108.1623                         | 0.6623                  | 51.0                                    | 792.5                     | FLOOD RISK |
| 2880 Winter                 | 16.2                        | 0.0                            | 1.5                          | 17.7                        | 108.1558                         | 0.6558                  | 9.6                                     | 777.9                     | FLOOD RISK |
| 4320 Winter                 | 15.5                        | 0.0                            | 0.0                          | 15.5                        | 108.1023                         | 0.6023                  | 0.0                                     | 665.6                     | FLOOD RISK |
| 5760 Winter                 | 14.6                        | 0.0                            | 0.0                          | 14.6                        | 108.0387                         | 0.5387                  | 0.0                                     | 543.0                     | O K        |
| 7200 Winter                 | 13.7                        | 0.0                            | 0.0                          | 13.7                        | 107.9782                         | 0.4782                  | 0.0                                     | 437.9                     | ΟK         |
| 8640 Winter                 | 12.8                        | 0.0                            | 0.0                          | 12.8                        | 107.9262                         | 0.4262                  | 0.0                                     | 356.3                     | O K        |
| 10080 Winter                | 12.0                        | 0.0                            | 0.0                          | 12.0                        | 107.8807                         | 0.3807                  | 0.0                                     | 292.0                     | O K        |

| Storm<br>Duration<br>(mins) |        | Rain<br>(mm/hr) | Time-Peak<br>(mins) |
|-----------------------------|--------|-----------------|---------------------|
| 240                         | Winter | 6.13            | 784                 |
| 360                         | Winter | 4.58            | 894                 |
| 480                         | Winter | 3.72            | 986                 |
| 600                         | Winter | 3.16            | 1068                |
| 720                         | Winter | 2.76            | 1148                |
| 960                         | Winter | 2.24            | 1250                |
| 1440                        | Winter | 1.67            | 1484                |
| 2160                        | Winter | 1.24            | 1864                |
| 2880                        | Winter | 1.01            | 2296                |
| 4320                        | Winter | 0.75            | 3040                |
| 5760                        | Winter | 0.61            | 3744                |
| 7200                        | Winter | 0.52            | 4464                |
| 8640                        | Winter | 0.45            | 5176                |
| 10080                       | Winter | 0.40            | 5872                |

| Ove Arup & Partners Internation | al Ltd                    | Page 3 |
|---------------------------------|---------------------------|--------|
| The Arup Campus                 | NFC                       |        |
| Blyth Gate                      | Swale 5                   |        |
| Solihull B90 8AE                | 800 Deep                  |        |
| Date 14/01/10                   | Designed By CDH           |        |
| File NFC 30%CC.cas              | Checked By                |        |
| Micro Drainage                  | Source Control W.11.4 net |        |

# Cascade Rainfall Details for storage swale 5 30%cc.src

| Region                | ENG+WAL | Cv (Summer)           | 0.750 | Summer Storms    | Yes |
|-----------------------|---------|-----------------------|-------|------------------|-----|
| Return Period (years) | 1       | Cv (Winter)           | 0.840 | Winter Storms    | Yes |
| M5-60 (mm)            | 19.400  | Shortest Storm (mins) | 15    | Climate Change % | +30 |
| Ratio-R               | 0.400   | Longest Storm (mins)  | 10080 |                  |     |

### Time / Area Diagram

Total Area (ha) = 0.000

| Time  | (mins) | Area |
|-------|--------|------|
| from: | to:    | (ha) |

0 4 0.000

| Ove Arup & Partners Internationa | al Ltd                    | Page 4 |
|----------------------------------|---------------------------|--------|
| The Arup Campus                  | NFC                       |        |
| Blyth Gate                       | Swale 5                   |        |
| Solihull B90 8AE                 | 800 Deep                  |        |
| Date 14/01/10                    | Designed By CDH           |        |
| File NFC 30%CC.cas               | Checked By                |        |
| Micro Drainage                   | Source Control W.11.4 net | ·      |

#### Cascade Storage Controls for storage swale 5 30%cc.src

#### Swale Details

| Infil Coef - Base (m/hr)  | 0.000000 | Length (m)       | 382.0    |
|---------------------------|----------|------------------|----------|
| Infil Coef - Sides (m/hr) | 0.000000 | Side Slope (1:x) | 4.0      |
| Safety Factor             | 2.0      | Invert Level (m) | 107.500  |
| Porosity                  | 1.00     | Cover Level (m)  | 108.300  |
| Base Width (m)            | 0.5      | Slope (1:x)      | 100000.0 |

#### Orifice Outflow Control

Diameter (m) 0.100 Discharge Coefficient 0.600 Invert Level (m) 107.500

# Weir / Flum<u>e Overflow Control</u>

Discharge Coef 0.544 Width (m) 2.000 Crest Level (m) 108.150

| Ove Arup & Partners Internatio | nal Ltd                   | Page 1 |
|--------------------------------|---------------------------|--------|
| The Arup Campus                | NFC                       |        |
| Blyth Gate                     | Swale 6                   |        |
| Solihull B90 8AE               | 800 Deep                  |        |
| Date 14/01/10                  | Designed By CDH           | Drange |
| File NFC 30%CC.cas             | Checked By                |        |
| Micro Drainage                 | Source Control W.11.4 net |        |

# Cascade Summary of Results for storage swale 6 30%cc.src

| Upstream<br>Structures                                                                                                                                                                                                                 | Outflow To | Overflow To |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|
| <pre>storage swale 5 30%cc.src<br/>storage swale 4 30%cc.src<br/>storage swale 3 30%.src<br/>car park 3 30%cc.src<br/>cellular storage 30%cc.src<br/>car park 1 30%cc.src<br/>car park 2 30%cc.src<br/>storage swale 7 30%cc.src</pre> | (None)     | (None)      |

#### Half Drain Time : 43 minutes

| Dura  | orm<br>ntion<br>.ns) | Maximum<br>Control<br>(1/s) | Maximum<br>Filtration<br>(1/s) | Maximum<br>Outflow<br>(1/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m) | Maximum<br>Volume<br>(m <sup>3</sup> ) | Status |
|-------|----------------------|-----------------------------|--------------------------------|-----------------------------|----------------------------------|-------------------------|----------------------------------------|--------|
| 15    | Summer               | 9.5                         | 0.0                            | 9.5                         | 106.1158                         | 0.1158                  | 40.2                                   | ΟK     |
| 30    | Summer               | 11.0                        | 0.0                            | 11.0                        | 106.1233                         | 0.1233                  | 43.5                                   | ΟK     |
| 60    | Summer               | 12.1                        | 0.0                            | 12.1                        | 106.1288                         | 0.1288                  | 46.3                                   | ΟK     |
| 120   | Summer               | 13.2                        | 0.0                            | 13.2                        | 106.1343                         | 0.1343                  | 48.9                                   | ΟK     |
| 180   | Summer               | 13.8                        | 0.0                            | 13.8                        | 106.1373                         | 0.1373                  | 50.4                                   | O K    |
| 240   | Summer               | 14.2                        | 0.0                            | 14.2                        | 106.1397                         | 0.1398                  | 51.7                                   | O K    |
| 360   | Summer               | 14.7                        | 0.0                            | 14.7                        | 106.1432                         | 0.1433                  | 53.5                                   | ΟK     |
| 480   | Summer               | 15.1                        | 0.0                            | 15.1                        | 106.1458                         | 0.1458                  | 54.6                                   | O K    |
| 600   | Summer               | 15.3                        | 0.0                            | 15.3                        | 106.1472                         | 0.1473                  | 55.5                                   | O K    |
| 720   | Summer               | 15.5                        | 0.0                            | 15.5                        | 106.1488                         | 0.1488                  | 56.2                                   | O K    |
| 960   | Summer               | 15.8                        | 0.0                            | 15.8                        | 106.1503                         | 0.1503                  | 57.0                                   | O K    |
| 1440  | Summer               | 15.9                        | 0.0                            | 15.9                        | 106.1513                         | 0.1513                  | 57.6                                   | ΟK     |
| 2160  | Summer               | 15.8                        | 0.0                            | 15.8                        | 106.1507                         | 0.1508                  | 57.5                                   | O K    |
| 2880  | Summer               | 15.8                        | 0.0                            | 15.8                        | 106.1503                         | 0.1503                  | 57.0                                   | ΟK     |
| 4320  | Summer               | 15.3                        | 0.0                            | 15.3                        | 106.1473                         | 0.1473                  | 55.6                                   | O K    |
| 5760  | Summer               | 14.9                        | 0.0                            | 14.9                        | 106.1442                         | 0.1443                  | 53.9                                   | O K    |
| 7200  | Summer               | 14.3                        | 0.0                            | 14.3                        | 106.1403                         | 0.1403                  | 52.0                                   | ΟK     |
| 8640  | Summer               | 13.7                        | 0.0                            | 13.7                        | 106.1367                         | 0.1368                  | 50.1                                   | O K    |
| 10080 | Summer               | 13.2                        | 0.0                            | 13.2                        | 106.1343                         | 0.1343                  | 48.8                                   | ΟK     |
| 15    | Winter               | 10.2                        | 0.0                            | 10.2                        | 106.1193                         | 0.1193                  | 41.6                                   | O K    |
| 30    | Winter               | 11.5                        | 0.0                            | 11.5                        | 106.1258                         | 0.1258                  | 44.9                                   | ΟK     |
| 60    | Winter               | 12.7                        | 0.0                            | 12.7                        | 106.1318                         | 0.1318                  | 47.7                                   | ΟK     |
| 120   | Winter               | 13.8                        | 0.0                            | 13.8                        | 106.1373                         | 0.1373                  | 50.3                                   | 0 K    |

| Storm<br>Duration<br>(mins) |                                                                                                                                                              | Rain<br>(mm/hr)                                                                                                                                                                             | Time-Peak<br>(mins)                                                                                                                                               |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 60                          | Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Winter<br>Winter | $\begin{array}{c} 39.03\\ 25.41\\ 16.08\\ 9.97\\ 7.50\\ 6.13\\ 4.58\\ 3.72\\ 3.16\\ 2.76\\ 2.24\\ 1.67\\ 1.24\\ 1.01\\ 0.75\\ 0.61\\ 0.52\\ 0.45\\ 0.40\\ 39.03\\ 25.41\\ 16.08\end{array}$ | 374<br>444<br>534<br>630<br>710<br>786<br>894<br>968<br>1060<br>1146<br>1276<br>1584<br>1952<br>2268<br>3008<br>3672<br>4432<br>5048<br>5816<br>384<br>477<br>566 |
| 120                         | Winter                                                                                                                                                       | 9.97                                                                                                                                                                                        | 672                                                                                                                                                               |

| Ove Arup & Partners Intern | national Ltd              | Page 2 |
|----------------------------|---------------------------|--------|
| The Arup Campus            | NFC                       |        |
| Blyth Gate                 | Swale 6                   |        |
| Solihull B90 8AE           | 800 Deep                  |        |
| Date 14/01/10              | Designed By CDH           |        |
| File NFC 30%CC.cas         | Checked By                |        |
| Micro Drainage             | Source Control W.11.4 net |        |

# Cascade Summary of Results for storage swale 6 30%cc.src

| Storm<br>Duration<br>(mins) | Maximum<br>Control<br>(1/s) | Maximum<br>Filtration<br>(l/s) | Maximum<br>Outflow<br>(l/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m) | Maximum<br>Volume<br>(m³) | Status |
|-----------------------------|-----------------------------|--------------------------------|-----------------------------|----------------------------------|-------------------------|---------------------------|--------|
| 180 Winter                  | 14.3                        | 0.0                            | 14.3                        | 106.1407                         | 0.1408                  | 52.3                      | ОК     |
| 240 Winter                  | 14.8                        | 0.0                            | 14.8                        | 106.1438                         | 0.1438                  | 53.6                      | ΟK     |
| 360 Winter                  | 15.3                        | 0.0                            | 15.3                        | 106.1472                         | 0.1473                  | 55.5                      | ΟK     |
| 480 Winter                  | 15.7                        | 0.0                            | 15.7                        | 106.1497                         | 0.1498                  | 56.7                      | ОК     |
| 600 Winter                  | 15.9                        | 0.0                            | 15.9                        | 106.1513                         | 0.1513                  | 57.6                      | ОК     |
| 720 Winter                  | 16.2                        | 0.0                            | 16.2                        | 106.1527                         | 0.1528                  | 58.3                      | ОК     |
| 960 Winter                  | 19.3                        | 0.0                            | 19.3                        | 106.1732                         | 0.1733                  | 69.6                      | ΟK     |
| 1440 Winter                 | 21.6                        | 0.0                            | 21.6                        | 106.1878                         | 0.1878                  | 78.2                      | ΟK     |
| 2160 Winter                 | 20.2                        | 0.0                            | 20.2                        | 106.1793                         | 0.1793                  | 73.1                      | ОК     |
| 2880 Winter                 | 17.3                        | 0.0                            | 17.3                        | 106.1602                         | 0.1603                  | 62.4                      | ΟK     |
| 4320 Winter                 | 15.5                        | 0.0                            | 15.5                        | 106.1483                         | 0.1483                  | 56.2                      | ΟK     |
| 5760 Winter                 | 14.6                        | 0.0                            | 14.6                        | 106.1428                         | 0.1428                  | 53.1                      | ОК     |
| 7200 Winter                 | 13.7                        | 0.0                            | 13.7                        | 106.1367                         | 0.1368                  | 50.1                      | ΟK     |
| 8640 Winter                 | 12.8                        | 0.0                            | 12.8                        | 106.1323                         | 0.1323                  | 47.8                      | ΟK     |
| 10080 Winter                | 12.0                        | 0.0                            | 12.0                        | 106.1283                         | 0.1283                  | 45.9                      | O K    |

| orm<br>tion<br>.ns) | Rain<br>(mm/hr)                                                                                                                                         | Time-Peak<br>(mins)                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Winter              | 7.50                                                                                                                                                    | 778                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Winter              | 6.13                                                                                                                                                    | 828                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Winter              | 4.58                                                                                                                                                    | 944                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Winter              | 3.72                                                                                                                                                    | 1020                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Winter              | 3.16                                                                                                                                                    | 1116                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Winter              | 2.76                                                                                                                                                    | 1190                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Winter              | 2.24                                                                                                                                                    | 1298                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Winter              | 1.67                                                                                                                                                    | 1544                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Winter              | 1.24                                                                                                                                                    | 1924                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Winter              | 1.01                                                                                                                                                    | 2336                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Winter              | 0.75                                                                                                                                                    | 3120                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Winter              | 0.61                                                                                                                                                    | 3824                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Winter              | 0.52                                                                                                                                                    | 4584                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Winter              | 0.45                                                                                                                                                    | 5192                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Winter              | 0.40                                                                                                                                                    | 5920                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | tion<br>ms)<br>Winter<br>Winter<br>Winter<br>Winter<br>Winter<br>Winter<br>Winter<br>Winter<br>Winter<br>Winter<br>Winter<br>Winter<br>Winter<br>Winter | Rain<br>(mm/hr)           Winter         7.50           Winter         6.13           Winter         4.58           Winter         3.72           Winter         3.16           Winter         2.76           Winter         2.24           Winter         1.67           Winter         1.67           Winter         1.01           Winter         0.75           Winter         0.61           Winter         0.52           Winter         0.45 |

| Ove Arup & Partners Internationa | al Ltd                    | Page 3  |
|----------------------------------|---------------------------|---------|
| The Arup Campus                  | NFC                       |         |
| Blyth Gate                       | Swale 6                   |         |
| Solihull B90 8AE                 | 800 Deep                  |         |
| Date 14/01/10                    | Designed By CDH           | DENTERE |
| File NFC 30%CC.cas               | Checked By                |         |
| Micro Drainage                   | Source Control W.11.4 net | ·       |

# Cascade Rainfall Details for storage swale 6 30%cc.src

| Region                | ENG+WAL | Cv (Summer)           | 0.750 | Summer Storms    | Yes |
|-----------------------|---------|-----------------------|-------|------------------|-----|
| Return Period (years) | 1       | Cv (Winter)           | 0.840 | Winter Storms    | Yes |
| M5-60 (mm)            | 19.400  | Shortest Storm (mins) | 15    | Climate Change % | +30 |
| Ratio-R               | 0.400   | Longest Storm (mins)  | 10080 |                  |     |

### Time / Area Diagram

Total Area (ha) = 0.000

| Time  | (mins) | Area |
|-------|--------|------|
| from: | to:    | (ha) |

0 4 0.000

| Ove Arup & Partners International Ltd |                           | Page 4 |
|---------------------------------------|---------------------------|--------|
| The Arup Campus                       | NFC                       |        |
| Blyth Gate                            | Swale 6                   |        |
| Solihull B90 8AE                      | 800 Deep                  |        |
| Date 14/01/10                         | Designed By CDH           |        |
| File NFC 30%CC.cas                    | Checked By                |        |
| Micro Drainage                        | Source Control W.11.4 net |        |

# Cascade Storage Controls for storage swale 6 30%cc.src

#### Swale Details

| Infil Coef - Base (m/hr)  | 0.000000 | Length (m)       | 240.0    |
|---------------------------|----------|------------------|----------|
| Infil Coef - Sides (m/hr) | 0.00000  | Side Slope (1:x) | 4.0      |
| Safety Factor             | 2.0      | Invert Level (m) | 106.000  |
| Porosity                  | 1.00     | Cover Level (m)  | 106.800  |
| Base Width (m)            | 1.0      | Slope (1:x)      | 100000.0 |

### Orifice Outflow Control

Diameter (m) 0.233 Discharge Coefficient 0.600 Invert Level (m) 106.000

# 1 in 100 Year Simulations

#### Cascade Summary of Results for storage swale 1 30%cc.src

| Upstream   | Outflow To | Overflow To |
|------------|------------|-------------|
| Structures | oucliow lo | 0001110# 10 |

(None) storage swale 3 30%.src (None)

Half Drain Time : 28 minutes

| Dura  | orm<br>ntion<br>.ns) | Maximum<br>Control<br>(l/s) | Maximum<br>Filtration<br>(l/s) | Maximum<br>Outflow<br>(l/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m) | Maximum<br>Volume<br>(m³) | Status     |
|-------|----------------------|-----------------------------|--------------------------------|-----------------------------|----------------------------------|-------------------------|---------------------------|------------|
| 15    | Summer               | 8.2                         | 0.0                            | 8.2                         | 116.9777                         | 0.4777                  | 18.7                      | FLOOD RISK |
| 30    | Summer               | 8.4                         | 0.0                            | 8.4                         | 117.0032                         | 0.5032                  | 21.1                      | FLOOD RISK |
| 60    | Summer               | 8.4                         | 0.0                            | 8.4                         | 117.0032                         | 0.5032                  | 21.2                      | FLOOD RISK |
| 120   | Summer               | 8.2                         | 0.0                            | 8.2                         | 116.9772                         | 0.4772                  | 18.7                      | FLOOD RISK |
| 180   | Summer               | 8.0                         | 0.0                            | 8.0                         | 116.9452                         | 0.4452                  | 15.8                      | FLOOD RISK |
| 240   | Summer               | 7.7                         | 0.0                            | 7.7                         | 116.9112                         | 0.4112                  | 13.1                      | FLOOD RISK |
| 360   | Summer               | 7.2                         | 0.0                            | 7.2                         | 116.8477                         | 0.3477                  | 8.8                       | ΟK         |
| 480   | Summer               | 6.7                         | 0.0                            | 6.7                         | 116.7923                         | 0.2922                  | 5.9                       | 0 K        |
| 600   | Summer               | 6.2                         | 0.0                            | 6.2                         | 116.7448                         | 0.2447                  | 4.0                       | 0 K        |
| 720   | Summer               | 5.8                         | 0.0                            | 5.8                         | 116.7042                         | 0.2042                  | 2.6                       | 0 K        |
| 960   | Summer               | 5.1                         | 0.0                            | 5.1                         | 116.6417                         | 0.1418                  | 1.2                       | 0 K        |
| 1440  | Summer               | 3.9                         | 0.0                            | 3.9                         | 116.6018                         | 0.1018                  | 0.6                       | 0 K        |
| 2160  | Summer               | 2.8                         | 0.0                            | 2.8                         | 116.5833                         | 0.0833                  | 0.4                       | 0 K        |
| 2880  | Summer               | 2.2                         | 0.0                            | 2.2                         | 116.5713                         | 0.0713                  | 0.3                       | 0 K        |
| 4320  | Summer               | 1.6                         | 0.0                            | 1.6                         | 116.5577                         | 0.0578                  | 0.2                       | 0 K        |
| 5760  | Summer               | 1.3                         | 0.0                            | 1.3                         | 116.5518                         | 0.0517                  | 0.1                       | 0 K        |
| 7200  | Summer               | 1.1                         | 0.0                            | 1.1                         | 116.5482                         | 0.0482                  | 0.1                       | 0 K        |
| 8640  | Summer               | 0.9                         | 0.0                            | 0.9                         | 116.5447                         | 0.0447                  | 0.1                       | 0 K        |
| 10080 | Summer               | 0.8                         | 0.0                            | 0.8                         | 116.5417                         | 0.0418                  | 0.1                       | 0 K        |
| 15    | Winter               | 8.4                         | 0.0                            | 8.4                         | 117.0067                         | 0.5067                  | 21.5                      | FLOOD RISK |
| 30    | Winter               | 8.7                         | 0.0                            | 8.7                         | 117.0357                         | 0.5357                  | 24.6                      | FLOOD RISK |
| 60    | Winter               | 8.6                         | 0.0                            | 8.6                         | 117.0342                         | 0.5342                  | 24.4                      | FLOOD RISK |
| 120   | Winter               | 8.4                         | 0.0                            | 8.4                         | 116.9942                         | 0.4942                  | 20.3                      | FLOOD RISK |
| 180   | Winter               | 8.0                         | 0.0                            | 8.0                         | 116.9462                         | 0.4462                  | 15.9                      | FLOOD RISK |
| 240   | Winter               | 7.6                         | 0.0                            | 7.6                         | 116.8962                         | 0.3962                  | 12.0                      | O K        |
| 360   | Winter               | 6.8                         | 0.0                            | 6.8                         | 116.8037                         | 0.3037                  | 6.5                       | 0 K        |
| 480   | Winter               | 6.0                         | 0.0                            | 6.0                         | 116.7267                         | 0.2267                  | 3.3                       | O K        |

| Storm<br>Duration<br>(mins) |        | Rain<br>(mm/hr) | Time-Peak<br>(mins) |
|-----------------------------|--------|-----------------|---------------------|
| 15                          | Summer | 124.07          | 16                  |
| 30                          | Summer | 81.51           | 26                  |
| 60                          | Summer | 51.03           | 44                  |
| 120                         | Summer | 30.89           | 78                  |
| 180                         | Summer | 22.72           | 110                 |
| 240                         | Summer | 18.17           | 142                 |
| 360                         |        | 13.19           | 202                 |
| 480                         | Summer | 10.52           | 262                 |
| 600                         | Summer | 8.81            | 320                 |
| 720                         | Summer | 7.63            | 376                 |
| 960                         | Summer | 6.06            | 492                 |
| 1440                        |        | 4.38            | 732                 |
| 2160                        |        | 3.16            | 1100                |
| 2880                        |        | 2.51            | 1460                |
|                             | Summer | 1.80            | 2140                |
| 5760                        |        | 1.43            | 2920                |
| 7200                        |        | 1.19            | 3656                |
|                             | Summer | 1.02            | 4320                |
| 10080                       |        | 0.90            | 4984                |
|                             | Winter | 124.07          | 16                  |
|                             | Winter | 81.51           | 29                  |
| 60                          | Winter | 51.03           | 46                  |
|                             | Winter | 30.89           | 84                  |
|                             | Winter | 22.72           | 118                 |
|                             | Winter | 18.17           | 150                 |
|                             | Winter | 13.19           | 210                 |
| 480                         | Winter | 10.52           | 266                 |

| Ove Arup & Partners Internat | tional Ltd                | Page 2 |
|------------------------------|---------------------------|--------|
| The Arup Campus              | NFC                       |        |
| Blyth Gate                   | Storage Swale 1           |        |
| Solihull B90 8AE             |                           |        |
| Date 14/01/10                | Designed By CDH           |        |
| File NFC 30%CC.CAS           | Checked By                |        |
| Micro Drainage               | Source Control W.11.4 net |        |

# Cascade Summary of Results for storage swale 1 30%cc.src

| Storm<br>Duration<br>(mins) | Maximum<br>Control<br>(1/s) | Maximum<br>Filtration<br>(1/s) | Maximum<br>Outflow<br>(l/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m) | Maximum<br>Volume<br>(m <sup>3</sup> ) | Status |
|-----------------------------|-----------------------------|--------------------------------|-----------------------------|----------------------------------|-------------------------|----------------------------------------|--------|
| 600 Winter                  | 5.3                         | 0.0                            | 5.3                         | 116.6647                         | 0.1648                  | 1.7                                    | ОК     |
| 720 Winter                  | 4.8                         | 0.0                            | 4.8                         | 116.6192                         | 0.1193                  | 0.8                                    | ΟK     |
| 960 Winter                  | 3.9                         | 0.0                            | 3.9                         | 116.6018                         | 0.1018                  | 0.6                                    | ΟK     |
| 1440 Winter                 | 2.8                         | 0.0                            | 2.8                         | 116.5837                         | 0.0838                  | 0.4                                    | ΟK     |
| 2160 Winter                 | 2.0                         | 0.0                            | 2.0                         | 116.5667                         | 0.0668                  | 0.2                                    | ΟK     |
| 2880 Winter                 | 1.6                         | 0.0                            | 1.6                         | 116.5577                         | 0.0577                  | 0.2                                    | ΟK     |
| 4320 Winter                 | 1.2                         | 0.0                            | 1.2                         | 116.5498                         | 0.0497                  | 0.1                                    | ΟK     |
| 5760 Winter                 | 0.9                         | 0.0                            | 0.9                         | 116.5452                         | 0.0452                  | 0.1                                    | ΟK     |
| 7200 Winter                 | 0.8                         | 0.0                            | 0.8                         | 116.5403                         | 0.0402                  | 0.1                                    | ΟK     |
| 8640 Winter                 | 0.7                         | 0.0                            | 0.7                         | 116.5372                         | 0.0373                  | 0.1                                    | ΟK     |
| 10080 Winter                | 0.6                         | 0.0                            | 0.6                         | 116.5352                         | 0.0352                  | 0.1                                    | O K    |

| Dura  | orm<br>ation<br>.ns) | Rain<br>(mm/hr) | Time-Peak<br>(mins) |
|-------|----------------------|-----------------|---------------------|
| 600   | Winter               | 8.81            | 320                 |
| 720   | Winter               | 7.63            | 370                 |
| 960   | Winter               | 6.06            | 488                 |
| 1440  | Winter               | 4.38            | 724                 |
| 2160  | Winter               | 3.16            | 1068                |
| 2880  | Winter               | 2.51            | 1440                |
| 4320  | Winter               | 1.80            | 2168                |
| 5760  | Winter               | 1.43            | 2936                |
| 7200  | Winter               | 1.19            | 3568                |
| 8640  | Winter               | 1.02            | 4160                |
| 10080 | Winter               | 0.90            | 5064                |

| Ove Arup & Partners Internati | onal Ltd                  | Page 3 |
|-------------------------------|---------------------------|--------|
| The Arup Campus               | NFC                       |        |
| Blyth Gate                    | Storage Swale 1           |        |
| Solihull B90 8AE              |                           |        |
| Date 14/01/10                 | Designed By CDH           |        |
| File NFC 30%CC.CAS            | Checked By                |        |
| Micro Drainage                | Source Control W.11.4 net |        |

# Cascade Rainfall Details for storage swale 1 30%cc.src

| Region                | ENG+WAL | Cv (Summer)           | 0.750 | Summer Storms    | Yes |
|-----------------------|---------|-----------------------|-------|------------------|-----|
| Return Period (years) | 100     | Cv (Winter)           | 0.840 | Winter Storms    | Yes |
| M5-60 (mm)            | 19.400  | Shortest Storm (mins) | 15    | Climate Change % | +30 |
| Ratio-R               | 0.400   | Longest Storm (mins)  | 10080 |                  |     |

Time / Area Diagram

Total Area (ha) = 0.107

| Time  | (mins) | Area |
|-------|--------|------|
| from: | to:    | (ha) |

0 4 0.107

| Ove Arup & Partners Internation | al Ltd                    | Page 4 |
|---------------------------------|---------------------------|--------|
| The Arup Campus                 | NFC                       |        |
| Blyth Gate                      | Storage Swale 1           |        |
| Solihull B90 8AE                |                           |        |
| Date 14/01/10                   | Designed By CDH           |        |
| File NFC 30%CC.CAS              | Checked By                |        |
| Micro Drainage                  | Source Control W.11.4 net | •      |

# Cascade Storage Controls for storage swale 1 30%cc.src

#### Swale Details

| Infil Coef - Base (m/hr)  | 0.00000  | Length (m)       | 60.0    |
|---------------------------|----------|------------------|---------|
| Infil Coef - Sides (m/hr) | 0.000000 | Side Slope (1:x) | 4.0     |
| Safety Factor             | 2.0      | Invert Level (m) | 116.500 |
| Porosity                  | 1.00     | Cover Level (m)  | 117.100 |
| Base Width (m)            | 2.0      | Slope (1:x)      | 50.0    |

### Pipe Outflow Control

| Pipe Diameter (m) | 0.100  | Roughness (mm)      | 0.600 | Invert Level ( | (m) 116.500 |
|-------------------|--------|---------------------|-------|----------------|-------------|
| Slope (1:x)       | 150.0  | Entry Loss Coef     | 0.500 |                |             |
| Length (m)        | 25.000 | Coef of Contraction | 0.600 |                |             |

#### Cascade Summary of Results for storage swale 2 30%cc.src

Overflow To

| Upstream<br>Structures | Outflow To |
|------------------------|------------|
|                        |            |

storage swale 7 30%cc.src cellular storage 30%cc.src (None)

Half Drain Time : 67 minutes

| Storm<br>Duration<br>(mins)         | Maximum<br>Control<br>(l/s) | Maximum<br>Filtration<br>(l/s) | Maximum<br>Outflow<br>(l/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m)    | Maximum<br>Volume<br>(m <sup>3</sup> ) | Status                                 |
|-------------------------------------|-----------------------------|--------------------------------|-----------------------------|----------------------------------|----------------------------|----------------------------------------|----------------------------------------|
| 15 Summe<br>30 Summe                | er 6.8                      | 0.0                            | 6.4<br>6.8                  | 116.7622<br>116.8037             | 0.3622<br>0.4037           | 29.2<br>37.6                           | O K<br>FLOOD RISK                      |
| 60 Summe<br>120 Summe               |                             | 0.0                            | 7.1<br>7.2                  | 116.8377<br>116.8482             | 0.4377<br>0.4482           | 45.5<br>48.1                           | FLOOD RISK<br>FLOOD RISK               |
| 180 Summe<br>240 Summe              |                             | 0.0                            | 7.1<br>7.0                  | 116.8392<br>116.8277             | 0.4392<br>0.4277           | 45.9<br>43.1                           | FLOOD RISK<br>FLOOD RISK               |
| 360 Summe<br>480 Summe              |                             | 0.0                            | 6.8<br>6.5                  | 116.8022<br>116.7787             | 0.4022<br>0.3787           | 37.3<br>32.4                           | FLOOD RISK<br>O K                      |
| 600 Summe<br>720 Summe              |                             | 0.0                            | 6.3<br>6.1                  | 116.7562<br>116.7357             | 0.3562<br>0.3357           | 28.1<br>24.4                           | ОК                                     |
| 960 Summe<br>1440 Summe             |                             | 0.0                            | 5.7<br>5.1                  | 116.6992<br>116.6438             | 0.2992                     | 18.8<br>11.8                           | ОК                                     |
| 2160 Summe<br>2880 Summe            | er 4.2                      | 0.0                            | 4.2<br>3.4                  | 116.6083<br>116.5947             | 0.2082                     | 8.3                                    | ОК                                     |
| 4320 Summe<br>5760 Summe            | er 2.5                      | 0.0                            | 2.5                         | 116.5778<br>116.5663             | 0.1778                     | 5.9                                    | ОК                                     |
| 7200 Summe<br>8640 Summe            | er 1.7                      | 0.0                            | 1.7                         | 116.5588<br>116.5548             | 0.1588                     | 4.6<br>4.3                             | O K<br>O K                             |
| 10080 Summe<br>15 Winte             | r 1.3                       | 0.0                            | 1.3<br>6.5                  | 116.5518<br>116.7787             | 0.1518                     | 4.1<br>32.4                            | O K<br>O K                             |
| 30 Winte                            | er 6.9                      | 0.0                            | 6.9<br>7.3                  | 116.8217<br>116.8587             | 0.4217<br>0.4587           | 41.7                                   | FLOOD RISK                             |
| 60 Winte<br>120 Winte<br>180 Winte  | er 7.4                      | 0.0<br>0.0<br>0.0              | 7.3<br>7.4<br>7.3           | 116.8587<br>116.8712<br>116.8607 | 0.4587<br>0.4712<br>0.4607 | 50.8<br>54.3<br>51.4                   | FLOOD RISK<br>FLOOD RISK<br>FLOOD RISK |
| 240 Winte<br>360 Winte<br>480 Winte | er 6.8                      | 0.0<br>0.0<br>0.0              | 7.1<br>6.8<br>6.5           | 116.8427<br>116.8067<br>116.7728 | 0.4427<br>0.4067<br>0.3727 | 46.8<br>38.3<br>31.2                   | FLOOD RISK<br>FLOOD RISK<br>O K        |

| Dura                                                                                                                                                       | orm<br>ation<br>.ns)                                                                                                                                                                       | Rain<br>(mm/hr)                                                                                                                                                                                                                               | Time-Peak<br>(mins)                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30<br>60<br>120<br>240<br>360<br>720<br>960<br>1440<br>2160<br>2880<br>4320<br>5760<br>7200<br>8640<br>10080<br>15<br>30<br>60<br><b>120</b><br>180<br>240 | Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Winter<br>Winter<br>Winter<br>Winter<br>Winter<br>Winter<br>Winter | 124.07<br>81.51<br>51.03<br>30.89<br>22.72<br>18.17<br>13.19<br>10.52<br>8.81<br>7.63<br>6.06<br>4.38<br>3.16<br>2.51<br>1.80<br>1.43<br>1.19<br>1.02<br>0.90<br>124.07<br>81.51<br>51.03<br><b>30.89</b><br>22.72<br>18.17<br>13.19<br>10.52 | 34<br>47<br>66<br>96<br>120<br>154<br>222<br>286<br>348<br>410<br>528<br>754<br>1104<br>1468<br>2200<br>2936<br>3616<br>4336<br>5136<br>5136<br>5136<br>5136<br>130<br>98<br>130<br>168<br>238<br>302 |
|                                                                                                                                                            |                                                                                                                                                                                            |                                                                                                                                                                                                                                               |                                                                                                                                                                                                       |

| Ove Arup & Partners Internat | cional Ltd                | Page 2 |
|------------------------------|---------------------------|--------|
| The Arup Campus              | NFC                       |        |
| Blyth Gate                   | Storage Swale 2           |        |
| Solihull B90 8AE             |                           |        |
| Date 14/01/10                | Designed By CDH           |        |
| File NFC 30%CC.CAS           | Checked By                |        |
| Micro Drainage               | Source Control W.11.4 net |        |

# Cascade Summary of Results for storage swale 2 30%cc.src

| Storm<br>Duration<br>(mins) | Maximum<br>Control<br>(1/s) | Maximum<br>Filtration<br>(1/s) | Maximum<br>Outflow<br>(l/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m) | Maximum<br>Volume<br>(m <sup>3</sup> ) | Status |
|-----------------------------|-----------------------------|--------------------------------|-----------------------------|----------------------------------|-------------------------|----------------------------------------|--------|
| 600 Winter                  | 6.2                         | 0.0                            | 6.2                         | 116.7407                         | 0.3407                  | 25.3                                   | ОК     |
| 720 Winter                  | 5.9                         | 0.0                            | 5.9                         | 116.7107                         | 0.3107                  | 20.5                                   | ОК     |
| 960 Winter                  | 5.3                         | 0.0                            | 5.3                         | 116.6602                         | 0.2602                  | 13.7                                   | ОК     |
| 1440 Winter                 | 4.3                         | 0.0                            | 4.3                         | 116.6093                         | 0.2092                  | 8.4                                    | O K    |
| 2160 Winter                 | 3.1                         | 0.0                            | 3.1                         | 116.5898                         | 0.1897                  | 6.8                                    | ОК     |
| 2880 Winter                 | 2.5                         | 0.0                            | 2.5                         | 116.5783                         | 0.1782                  | 5.9                                    | ОК     |
| 4320 Winter                 | 1.8                         | 0.0                            | 1.8                         | 116.5622                         | 0.1623                  | 4.8                                    | ОК     |
| 5760 Winter                 | 1.4                         | 0.0                            | 1.4                         | 116.5547                         | 0.1548                  | 4.3                                    | ОК     |
| 7200 Winter                 | 1.2                         | 0.0                            | 1.2                         | 116.5508                         | 0.1508                  | 4.1                                    | O K    |
| 8640 Winter                 | 1.0                         | 0.0                            | 1.0                         | 116.5478                         | 0.1478                  | 3.9                                    | ОК     |
| 10080 Winter                | 0.9                         | 0.0                            | 0.9                         | 116.5448                         | 0.1448                  | 3.7                                    | O K    |

| Storm<br>Duration<br>(mins) |        | Rain<br>(mm/hr) | Time-Peak<br>(mins) |
|-----------------------------|--------|-----------------|---------------------|
| 600                         | Winter | 8.81            | 366                 |
| 720                         | Winter | 7.63            | 426                 |
| 960                         | Winter | 6.06            | 540                 |
| 1440                        | Winter | 4.38            | 748                 |
| 2160                        | Winter | 3.16            | 1100                |
| 2880                        | Winter | 2.51            | 1468                |
| 4320                        | Winter | 1.80            | 2180                |
| 5760                        | Winter | 1.43            | 2872                |
| 7200                        | Winter | 1.19            | 3640                |
| 8640                        | Winter | 1.02            | 4312                |
| 10080                       | Winter | 0.90            | 5008                |

| Ove Arup & Partners Internati | onal Ltd                  | Page 3 |
|-------------------------------|---------------------------|--------|
| The Arup Campus               | NFC                       |        |
| Blyth Gate                    | Storage Swale 2           |        |
| Solihull B90 8AE              |                           |        |
| Date 14/01/10                 | Designed By CDH           |        |
| File NFC 30%CC.CAS            | Checked By                |        |
| Micro Drainage                | Source Control W.11.4 net |        |

# Cascade Rainfall Details for storage swale 2 30%cc.src

| Region                | ENG+WAL | Cv (Summer)           | 0.750 | Summer Storms    | Yes |
|-----------------------|---------|-----------------------|-------|------------------|-----|
| Return Period (years) | 100     | Cv (Winter)           | 0.840 | Winter Storms    | Yes |
| M5-60 (mm)            | 19.400  | Shortest Storm (mins) | 15    | Climate Change % | +30 |
| Ratio-R               | 0.400   | Longest Storm (mins)  | 10080 |                  |     |

Time / Area Diagram

Total Area (ha) = 0.068

| Time  | (mins) | Area |
|-------|--------|------|
| from: | to:    | (ha) |

0 4 0.068

| Ove Arup & Partners Internation | al Ltd                    | Page 4 |
|---------------------------------|---------------------------|--------|
| The Arup Campus                 | NFC                       |        |
| Blyth Gate                      | Storage Swale 2           |        |
| Solihull B90 8AE                |                           |        |
| Date 14/01/10                   | Designed By CDH           |        |
| File NFC 30%CC.CAS              | Checked By                |        |
| Micro Drainage                  | Source Control W.11.4 net | ·      |

# Cascade Storage Controls for storage swale 2 30%cc.src

#### Swale Details

| Infil Coef - Base (m/hr)  | 0.000000 | Length (m)       | 140.0   |
|---------------------------|----------|------------------|---------|
| Infil Coef - Sides (m/hr) | 0.000000 | Side Slope (1:x) | 4.0     |
| Safety Factor             | 2.0      | Invert Level (m) | 116.400 |
| Porosity                  | 1.00     | Cover Level (m)  | 117.000 |
| Base Width (m)            | 2.0      | Slope (1:x)      | 150.0   |

### Pipe Outflow Control

| Pipe Diameter (m) | 0.100  | Roughness (mm)      | 0.600 | Invert Level ( | m) 116.500 |
|-------------------|--------|---------------------|-------|----------------|------------|
| Slope (1:x)       | 150.0  | Entry Loss Coef     | 0.500 |                |            |
| Length (m)        | 25.000 | Coef of Contraction | 0.600 |                |            |

### Cascade Summary of Results for car park 1 30%cc.src

Upstream Structures

Overflow To

(None) cellular storage 30%cc.src cellular storage 30%cc.src

Half Drain Time : 78 minutes

Outflow To

| Dura  | orm<br>ation<br>ins) | Maximum<br>Control<br>(l/s) | Maximum<br>Filtration<br>(l/s) | Maximum<br>Outflow<br>(l/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m) | Maximum<br>Volume<br>(m³) | Status |
|-------|----------------------|-----------------------------|--------------------------------|-----------------------------|----------------------------------|-------------------------|---------------------------|--------|
| 15    | Summer               | 6.8                         | 0.0                            | 6.8                         | 114.6202                         | 0.3702                  | 35.2                      | ОК     |
| 30    | Summer               | 7.3                         | 0.0                            | 7.3                         | 114.6777                         | 0.4277                  | 46.9                      | ОК     |
| 60    | Summer               | 7.7                         | 0.0                            | 7.7                         | 114.7127                         | 0.4627                  | 54.9                      | ОК     |
| 120   | Summer               | 7.8                         | 0.0                            | 7.8                         | 114.7257                         | 0.4757                  | 58.1                      | ΟK     |
| 180   | Summer               | 7.8                         | 0.0                            | 7.8                         | 114.7232                         | 0.4732                  | 57.4                      | ОК     |
| 240   | Summer               | 7.7                         | 0.0                            | 7.7                         | 114.7137                         | 0.4637                  | 55.2                      | ОК     |
| 360   | Summer               | 7.4                         | 0.0                            | 7.4                         | 114.6892                         | 0.4392                  | 49.5                      | ОК     |
| 480   | Summer               | 7.2                         | 0.0                            | 7.2                         | 114.6647                         | 0.4147                  | 44.1                      | ΟK     |
| 600   | Summer               | 7.0                         | 0.0                            | 7.0                         | 114.6407                         | 0.3907                  | 39.2                      | ΟK     |
| 720   | Summer               | 6.8                         | 0.0                            | 6.8                         | 114.6182                         | 0.3682                  | 34.8                      | ОК     |
| 960   | Summer               | 6.3                         | 0.0                            | 6.3                         | 114.5782                         | 0.3282                  | 27.6                      | ΟK     |
| 1440  | Summer               | 5.6                         | 0.0                            | 5.6                         | 114.5143                         | 0.2642                  | 17.9                      | ΟK     |
| 2160  | Summer               | 4.7                         | 0.0                            | 4.7                         | 114.4473                         | 0.1972                  | 10.0                      | ΟK     |
| 2880  | Summer               | 4.0                         | 0.0                            | 4.0                         | 114.4043                         | 0.1543                  | 6.1                       | ΟK     |
| 4320  | Summer               | 3.1                         | 0.0                            | 3.1                         | 114.3568                         | 0.1068                  | 2.9                       | ΟK     |
| 5760  | Summer               | 2.4                         | 0.0                            | 2.4                         | 114.3402                         | 0.0903                  | 2.1                       | ΟK     |
| 7200  | Summer               | 2.0                         | 0.0                            | 2.0                         | 114.3298                         | 0.0798                  | 1.6                       | ΟK     |
| 8640  | Summer               | 1.7                         | 0.0                            | 1.7                         | 114.3228                         | 0.0728                  | 1.3                       | ΟK     |
| 10080 | Summer               | 1.5                         | 0.0                            | 1.5                         | 114.3167                         | 0.0668                  | 1.1                       | ΟK     |
| 15    | Winter               | 7.1                         | 0.0                            | 7.1                         | 114.6492                         | 0.3992                  | 40.9                      | ΟK     |
| 30    | Winter               | 7.6                         | 0.0                            | 7.6                         | 114.7102                         | 0.4602                  | 54.3                      | O K    |
| 60    | Winter               | 8.0                         | 0.0                            | 8.0                         | 114.7492                         | 0.4992                  | 63.9                      | ΟK     |
| 120   | Winter               | 8.1                         | 0.0                            | 8.1                         | 114.7602                         | 0.5102                  | 66.7                      | ΟK     |
| 180   | Winter               | 8.0                         | 0.0                            | 8.0                         | 114.7537                         | 0.5037                  | 65.0                      | ΟK     |
| 240   | Winter               | 7.9                         | 0.0                            | 7.9                         | 114.7397                         | 0.4897                  | 61.5                      | ΟK     |
| 360   | Winter               | 7.6                         | 0.0                            | 7.6                         | 114.7042                         | 0.4542                  | 52.9                      | ΟK     |
| 480   | Winter               | 7.2                         | 0.0                            | 7.2                         | 114.6687                         | 0.4187                  | 45.0                      | O K    |

| 15       Summer       124.07       18         30       Summer       81.51       32         60       Summer       51.03       60         120       Summer       30.89       90         180       Summer       22.72       124         240       Summer       18.17       158         360       Summer       13.19       226         480       Summer       10.52       292         600       Summer       8.81       356         720       Summer       7.63       420         960       Summer       6.06       540         1440       Summer       4.38       780         2160       Summer       3.16       1128         2880       Summer       1.43       2936         7200       Summer       1.43       2936         7200       Summer       1.02       4360         10080       Summer       0.90       5136         15       Winter       124.07       17         30       Winter       81.51       31         60       Winter       10.3       58         120       Winte | Dura                                                                                                                                                                                     | orm<br>Ition<br>.ns)                                                                                                                                                                                 | Rain<br>(mm/hr)                                                                                                                                                                                                     | Time-Peak<br>(mins)                                                                                                                                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30<br>60<br>120<br>180<br>240<br>360<br>480<br>600<br>720<br>960<br>1440<br>2160<br>2880<br>4320<br>5760<br>57200<br>8640<br>10080<br>15<br>300<br>60<br>120<br>180<br>120<br>180<br>360 | Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Winter<br>Winter<br>Winter<br>Winter<br>Winter<br>Winter<br>Winter | 81.51<br>51.03<br>30.89<br>22.72<br>18.17<br>13.19<br>10.52<br>8.81<br>7.63<br>6.06<br>4.38<br>3.16<br>2.51<br>1.80<br>1.43<br>1.19<br>1.02<br>0.90<br>124.07<br>81.51<br>51.03<br>30.89<br>22.72<br>18.17<br>13.19 | 32<br>60<br>90<br>124<br>158<br>226<br>292<br>356<br>420<br>540<br>780<br>1128<br>1472<br>2200<br>2936<br>3672<br>4360<br>5136<br>17<br>31<br>5136<br>17<br>31<br>5136<br>17<br>31<br>5136 |

| Ove Arup & Partners International | l Ltd                     | Page 2 |
|-----------------------------------|---------------------------|--------|
| The Arup Campus                   | NFC                       |        |
| Blyth Gate                        | Car Park 1                |        |
| Solihull B90 8AE                  |                           |        |
| Date 14/01/10                     | Designed By CDH           | Dentre |
| File NFC 30%CC.CAS                | Checked By                |        |
| Micro Drainage                    | Source Control W.11.4 net |        |

# Cascade Summary of Results for car park 1 30%cc.src

| Storm<br>Duration<br>(mins) | Maximum<br>Control<br>(l/s) | Maximum<br>Filtration<br>(l/s) | Maximum<br>Outflow<br>(l/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m) | Maximum<br>Volume<br>(m³) | Status |
|-----------------------------|-----------------------------|--------------------------------|-----------------------------|----------------------------------|-------------------------|---------------------------|--------|
| 600 Winter                  | 6.9                         | 0.0                            | 6.9                         | 114.6347                         | 0.3847                  | 38.0                      | ОК     |
| 720 Winter                  | 6.6                         | 0.0                            | 6.6                         | 114.6032                         | 0.3532                  | 32.0                      | ΟK     |
| 960 Winter                  | 6.0                         | 0.0                            | 6.0                         | 114.5482                         | 0.2982                  | 22.8                      | ΟK     |
| 1440 Winter                 | 5.0                         | 0.0                            | 5.0                         | 114.4662                         | 0.2162                  | 12.0                      | ΟK     |
| 2160 Winter                 | 3.8                         | 0.0                            | 3.8                         | 114.3938                         | 0.1438                  | 5.3                       | ΟK     |
| 2880 Winter                 | 3.1                         | 0.0                            | 3.1                         | 114.3573                         | 0.1073                  | 2.9                       | ΟK     |
| 4320 Winter                 | 2.2                         | 0.0                            | 2.2                         | 114.3347                         | 0.0848                  | 1.9                       | ΟK     |
| 5760 Winter                 | 1.7                         | 0.0                            | 1.7                         | 114.3228                         | 0.0728                  | 1.4                       | ΟK     |
| 7200 Winter                 | 1.4                         | 0.0                            | 1.4                         | 114.3148                         | 0.0648                  | 1.1                       | ΟK     |
| 8640 Winter                 | 1.2                         | 0.0                            | 1.2                         | 114.3092                         | 0.0592                  | 0.9                       | ΟK     |
| 10080 Winter                | 1.1                         | 0.0                            | 1.1                         | 114.3037                         | 0.0537                  | 0.7                       | O K    |

| Storm<br>Duration<br>(mins) |        | Rain<br>(mm/hr) | Time-Peak<br>(mins) |
|-----------------------------|--------|-----------------|---------------------|
| 600                         | Winter | 8.81            | 376                 |
| 720                         | Winter | 7.63            | 440                 |
| 960                         | Winter | 6.06            | 560                 |
| 1440                        | Winter | 4.38            | 794                 |
| 2160                        | Winter | 3.16            | 1128                |
| 2880                        | Winter | 2.51            | 1468                |
| 4320                        | Winter | 1.80            | 2204                |
| 5760                        | Winter | 1.43            | 2896                |
| 7200                        | Winter | 1.19            | 3672                |
| 8640                        | Winter | 1.02            | 4376                |
| 10080                       | Winter | 0.90            | 5048                |

| Ove Arup & Partners Internati | onal Ltd                  | Page 3 |
|-------------------------------|---------------------------|--------|
| The Arup Campus               | NFC                       |        |
| Blyth Gate                    | Car Park 1                |        |
| Solihull B90 8AE              |                           |        |
| Date 14/01/10                 | Designed By CDH           |        |
| File NFC 30%CC.CAS            | Checked By                |        |
| Micro Drainage                | Source Control W.11.4 net |        |

# Cascade Rainfall Details for car park 1 30%cc.src

| Region                | ENG+WAL | Cv (Summer)           | 0.750 | Summer Storms    | Yes |
|-----------------------|---------|-----------------------|-------|------------------|-----|
| Return Period (years) | 100     | Cv (Winter)           | 0.840 | Winter Storms    | Yes |
| M5-60 (mm)            | 19.400  | Shortest Storm (mins) | 15    | Climate Change % | +30 |
| Ratio-R               | 0.400   | Longest Storm (mins)  | 10080 |                  |     |

Time / Area Diagram

Total Area (ha) = 0.215

| Time  | (mins) | Area |
|-------|--------|------|
| from: | to:    | (ha) |

0 4 0.215

| Ove Arup & Partners Internati | onal Ltd                  | Page 4 |
|-------------------------------|---------------------------|--------|
| The Arup Campus               | NFC                       |        |
| Blyth Gate                    | Car Park 1                |        |
| Solihull B90 8AE              |                           |        |
| Date 14/01/10                 | Designed By CDH           |        |
| File NFC 30%CC.CAS            | Checked By                |        |
| Micro Drainage                | Source Control W.11.4 net |        |

### Cascade Storage Controls for car park 1 30%cc.src

#### Porous Car Park Details

| Infil Coef – Base (m/hr)     | 0.00000 | Invert Level (m)        | 114.250 |
|------------------------------|---------|-------------------------|---------|
| Membrane Percolation (mm/hr) | 1000    | Cover Level (m)         | 115.000 |
| Safety Factor                | 2.0     | Slope (1:x)             | 30.0    |
| Porosity                     | 0.30    | Max Percolation (l/s)   | 601.7   |
| Length (m)                   | 38.0    | Depression Storage (mm) | 5       |
| Width (m)                    | 57.0    | Evaporation (mm/day)    | 3       |

#### Orifice Outflow Control

Diameter (m) 0.075 Discharge Coefficient 0.600 Invert Level (m) 114.250

### Cascade Summary of Results for car park 2 30%cc.src

Upstream Structures

Outflow To

Overflow To

(None) cellular storage 30%cc.src cellular storage 30%cc.src

Half Drain Time : 47 minutes

| Dura  | orm<br>tion<br>.ns) | Maximum<br>Control<br>(l/s) | Maximum<br>Filtration<br>(l/s) | Maximum<br>Outflow<br>(1/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m) | Maximum<br>Volume<br>(m³) | Status     |
|-------|---------------------|-----------------------------|--------------------------------|-----------------------------|----------------------------------|-------------------------|---------------------------|------------|
| 15    | Summer              | 29.3                        | 0.0                            | 29.3                        | 116.2132                         | 0.4632                  | 88.5                      | O K        |
| 30    | Summer              | 31.5                        | 0.0                            | 31.5                        | 116.2752                         | 0.5252                  | 113.7                     | O K        |
| 60    | Summer              | 32.6                        | 0.0                            | 32.6                        | 116.3073                         | 0.5572                  | 128.1                     | FLOOD RISK |
| 120   | Summer              | 32.8                        | 0.0                            | 32.8                        | 116.3117                         | 0.5617                  | 130.2                     | FLOOD RISK |
| 180   | Summer              | 32.2                        | 0.0                            | 32.2                        | 116.2943                         | 0.5442                  | 122.2                     | O K        |
| 240   | Summer              | 31.4                        | 0.0                            | 31.4                        | 116.2707                         | 0.5207                  | 111.8                     | O K        |
| 360   | Summer              | 29.5                        | 0.0                            | 29.5                        | 116.2207                         | 0.4707                  | 91.5                      | O K        |
| 480   | Summer              | 27.9                        | 0.0                            | 27.9                        | 116.1772                         | 0.4272                  | 75.3                      | O K        |
| 600   | Summer              | 26.3                        | 0.0                            | 26.3                        | 116.1387                         | 0.3887                  | 62.4                      | O K        |
| 720   | Summer              | 24.9                        | 0.0                            | 24.9                        | 116.1057                         | 0.3557                  | 52.2                      | O K        |
| 960   | Summer              | 22.4                        | 0.0                            | 22.4                        | 116.0518                         | 0.3017                  | 37.6                      | O K        |
| 1440  | Summer              | 18.5                        | 0.0                            | 18.5                        | 115.9808                         | 0.2307                  | 21.9                      | O K        |
| 2160  | Summer              | 14.3                        | 0.0                            | 14.3                        | 115.9352                         | 0.1852                  | 14.2                      | O K        |
| 2880  | Summer              | 11.5                        | 0.0                            | 11.5                        | 115.9102                         | 0.1603                  | 10.6                      | O K        |
| 4320  | Summer              | 8.2                         | 0.0                            | 8.2                         | 115.8808                         | 0.1308                  | 7.0                       | O K        |
| 5760  | Summer              | 6.5                         | 0.0                            | 6.5                         | 115.8623                         | 0.1123                  | 5.2                       | O K        |
| 7200  | Summer              | 5.4                         | 0.0                            | 5.4                         | 115.8483                         | 0.0983                  | 4.0                       | O K        |
| 8640  | Summer              | 4.6                         | 0.0                            | 4.6                         | 115.8388                         | 0.0888                  | 3.2                       | O K        |
| 10080 | Summer              | 4.1                         | 0.0                            | 4.1                         | 115.8333                         | 0.0833                  | 2.8                       | O K        |
| 15    | Winter              | 30.6                        | 0.0                            | 30.6                        | 116.2502                         | 0.5002                  | 103.3                     | O K        |
| 30    | Winter              | 32.9                        | 0.0                            | 32.9                        | 116.3167                         | 0.5667                  | 132.6                     | FLOOD RISK |
| 60    | Winter              | 34.0                        | 0.0                            | 34.0                        | 116.3477                         | 0.5978                  | 147.4                     | FLOOD RISK |
|       | Winter              | 33.8                        | 0.0                            | 33.8                        | 116.3438                         | 0.5938                  | 145.4                     | FLOOD RISK |
| 180   | Winter              | 32.9                        | 0.0                            | 32.9                        | 116.3148                         | 0.5647                  | 131.6                     | FLOOD RISK |
|       | Winter              | 31.7                        | 0.0                            | 31.7                        | 116.2792                         | 0.5292                  | 115.6                     | O K        |
|       | Winter              | 29.1                        | 0.0                            | 29.1                        | 116.2087                         | 0.4587                  | 86.9                      | O K        |
| 480   | Winter              | 26.7                        | 0.0                            | 26.7                        | 116.1482                         | 0.3982                  | 65.3                      | O K        |

| Dura                                                                                                                                                      | orm<br>ation<br>.ns)                                                                                       | Rain<br>(mm/hr)                                                                                                                                                                                      | Time-Peak<br>(mins)                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30<br>60<br>120<br>180<br>240<br>360<br>480<br>480<br>2160<br>2860<br>4320<br>5760<br>7200<br>8640<br>10080<br>15<br>30<br>60<br>60<br>120<br>180<br>2240 | Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer | 124.07 $81.51$ $51.03$ $30.89$ $22.72$ $18.17$ $13.19$ $10.52$ $8.81$ $7.63$ $6.06$ $4.38$ $3.16$ $2.51$ $1.80$ $1.43$ $1.19$ $1.02$ $0.90$ $124.07$ $81.51$ $51.03$ $30.89$ $22.72$ $18.17$ $13.19$ | 17<br>30<br>46<br>80<br>114<br>148<br>212<br>274<br>334<br>394<br>512<br>740<br>1100<br>1468<br>2188<br>2936<br>3664<br>4368<br>5120<br>17<br>30<br>50<br>88<br>81<br>24 |
| 480                                                                                                                                                       | Winter                                                                                                     | 10.52                                                                                                                                                                                                | 286                                                                                                                                                                      |

| Ove Arup & Partners Internat | cional Ltd                | Page 2  |
|------------------------------|---------------------------|---------|
| The Arup Campus              | NFC                       |         |
| Blyth Gate                   | Car Park 2                |         |
| Solihull B90 8AE             |                           |         |
| Date 14/01/10                | Designed By CDH           | Dranger |
| File NFC 30%CC.CAS           | Checked By                |         |
| Micro Drainage               | Source Control W.11.4 net |         |

# Cascade Summary of Results for car park 2 30%cc.src

| Storm<br>Duration<br>(mins) | Maximum<br>Control<br>(l/s) | Maximum<br>Filtration<br>(l/s) | Maximum<br>Outflow<br>(l/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m) | Maximum<br>Volume<br>(m <sup>3</sup> ) | Status |
|-----------------------------|-----------------------------|--------------------------------|-----------------------------|----------------------------------|-------------------------|----------------------------------------|--------|
| 600 Winter                  | 24.5                        | 0.0                            | 24.5                        | 116.0967                         | 0.3467                  | 49.6                                   | ΟK     |
| 720 Winter                  | 22.5                        | 0.0                            | 22.5                        | 116.0542                         | 0.3042                  | 38.2                                   | ΟK     |
| 960 Winter                  | 19.2                        | 0.0                            | 19.2                        | 115.9918                         | 0.2417                  | 24.1                                   | ОК     |
| 1440 Winter                 | 14.4                        | 0.0                            | 14.4                        | 115.9368                         | 0.1868                  | 14.4                                   | O K    |
| 2160 Winter                 | 10.5                        | 0.0                            | 10.5                        | 115.9013                         | 0.1513                  | 9.4                                    | ОК     |
| 2880 Winter                 | 8.2                         | 0.0                            | 8.2                         | 115.8808                         | 0.1308                  | 7.1                                    | ОК     |
| 4320 Winter                 | 5.9                         | 0.0                            | 5.9                         | 115.8553                         | 0.1053                  | 4.5                                    | ОК     |
| 5760 Winter                 | 4.6                         | 0.0                            | 4.6                         | 115.8388                         | 0.0888                  | 3.2                                    | ОК     |
| 7200 Winter                 | 3.9                         | 0.0                            | 3.9                         | 115.8313                         | 0.0813                  | 2.7                                    | ОК     |
| 8640 Winter                 | 3.3                         | 0.0                            | 3.3                         | 115.8258                         | 0.0758                  | 2.4                                    | ОК     |
| 10080 Winter                | 2.9                         | 0.0                            | 2.9                         | 115.8217                         | 0.0718                  | 2.1                                    | O K    |

| Dura  | orm<br>ation<br>.ns) | Rain<br>(mm/hr) | Time-Peak<br>(mins) |
|-------|----------------------|-----------------|---------------------|
| 600   | Winter               | 8.81            | 344                 |
| 720   | Winter               | 7.63            | 404                 |
| 960   | Winter               | 6.06            | 512                 |
| 1440  | Winter               | 4.38            | 738                 |
| 2160  | Winter               | 3.16            | 1100                |
| 2880  | Winter               | 2.51            | 1468                |
| 4320  | Winter               | 1.80            | 2196                |
| 5760  | Winter               | 1.43            | 2848                |
| 7200  | Winter               | 1.19            | 3664                |
| 8640  | Winter               | 1.02            | 4392                |
| 10080 | Winter               | 0.90            | 5136                |

| Ove Arup & Partners Internati | onal Ltd                  | Page 3 |
|-------------------------------|---------------------------|--------|
| The Arup Campus               | NFC                       |        |
| Blyth Gate                    | Car Park 2                |        |
| Solihull B90 8AE              |                           |        |
| Date 14/01/10                 | Designed By CDH           |        |
| File NFC 30%CC.CAS            | Checked By                |        |
| Micro Drainage                | Source Control W.11.4 net |        |

# Cascade Rainfall Details for car park 2 30%cc.src

| Region                | ENG+WAL | Cv (Summer)           | 0.750 | Summer Storms    | Yes |
|-----------------------|---------|-----------------------|-------|------------------|-----|
| Return Period (years) | 100     | Cv (Winter)           | 0.840 | Winter Storms    | Yes |
| M5-60 (mm)            | 19.400  | Shortest Storm (mins) | 15    | Climate Change % | +30 |
| Ratio-R               | 0.400   | Longest Storm (mins)  | 10080 |                  |     |

Time / Area Diagram

Total Area (ha) = 0.572

| Time  | (mins) | Area |
|-------|--------|------|
| from: | to:    | (ha) |

0 4 0.572

| Ove Arup & Partners Internation | nal Ltd                   | Page 4 |
|---------------------------------|---------------------------|--------|
| The Arup Campus                 | NFC                       |        |
| Blyth Gate                      | Car Park 2                |        |
| Solihull B90 8AE                |                           |        |
| Date 14/01/10                   | Designed By CDH           |        |
| File NFC 30%CC.CAS              | Checked By                |        |
| Micro Drainage                  | Source Control W.11.4 net |        |

### Cascade Storage Controls for car park 2 30%cc.src

#### Porous Car Park Details

| Infil Coef - Base (m/hr)     | 0.000000 | Invert Level (m)        | 115.750 |
|------------------------------|----------|-------------------------|---------|
| Membrane Percolation (mm/hr) | 1000     | Cover Level (m)         | 116.500 |
| Safety Factor                | 2.0      | Slope (1:x)             | 50.0    |
| Porosity                     | 0.30     | Max Percolation (l/s)   | 1588.9  |
| Length (m)                   | 104.0    | Depression Storage (mm) | 5       |
| Width (m)                    | 55.0     | Evaporation (mm/day)    | 3       |

#### Orifice Outflow Control

Diameter (m) 0.150 Discharge Coefficient 0.600 Invert Level (m) 115.750

| Ove Arup & Partners Internation | al Ltd                    | Page 1 |
|---------------------------------|---------------------------|--------|
| The Arup Campus                 | NFC                       |        |
| Blyth Gate                      | Cellular Storage          |        |
| Solihull B90 8AE                |                           |        |
| Date 14/01/10                   | Designed By CDH           |        |
| File NFC 30%CC.CAS              | Checked By                |        |
| Micro Drainage                  | Source Control W.11.4 net |        |

### Cascade Summary of Results for cellular storage 30%cc.src

| Upstream<br>Structures                                                                                 | Outflow To              | Overflow To |
|--------------------------------------------------------------------------------------------------------|-------------------------|-------------|
| car park 1 30%cc.src<br>car park 2 30%cc.src<br>storage swale 2 30%cc.src<br>storage swale 7 30%cc.src | storage swale 3 30%.src | (None)      |

### Half Drain Time : 13 minutes

| Dura  | orm<br>ation<br>ins) | Maximum<br>Control<br>(1/s) | Maximum<br>Filtration<br>(1/s) | Maximum<br>Outflow<br>(l/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m) | Maximum<br>Volume<br>(m <sup>3</sup> ) | Status |
|-------|----------------------|-----------------------------|--------------------------------|-----------------------------|----------------------------------|-------------------------|----------------------------------------|--------|
| 15    | Summer               | 437.3                       | 0.0                            | 437.3                       | 110.9523                         | 0.9523                  | 452.4                                  | O K    |
| 30    | Summer               | 488.9                       | 0.0                            | 488.9                       | 111.1278                         | 1.1278                  | 535.7                                  | O K    |
| 60    | Summer               | 494.7                       | 0.0                            | 494.7                       | 111.1488                         | 1.1488                  | 545.7                                  | O K    |
| 120   | Summer               | 460.4                       | 0.0                            | 460.4                       | 111.0283                         | 1.0283                  | 488.5                                  | O K    |
| 180   | Summer               | 419.2                       | 0.0                            | 419.2                       | 110.8953                         | 0.8953                  | 425.1                                  | ΟK     |
| 240   | Summer               | 383.2                       | 0.0                            | 383.2                       | 110.7893                         | 0.7893                  | 375.0                                  | O K    |
| 360   | Summer               | 322.4                       | 0.0                            | 322.4                       | 110.6658                         | 0.6658                  | 316.3                                  | O K    |
| 480   | Summer               | 274.4                       | 0.0                            | 274.4                       | 110.5957                         | 0.5957                  | 282.9                                  | ΟK     |
| 600   | Summer               | 240.4                       | 0.0                            | 240.4                       | 110.5457                         | 0.5457                  | 259.1                                  | O K    |
| 720   | Summer               | 214.6                       | 0.0                            | 214.6                       | 110.5077                         | 0.5077                  | 241.1                                  | O K    |
| 960   | Summer               | 178.3                       | 0.0                            | 178.3                       | 110.4527                         | 0.4527                  | 215.1                                  | ΟK     |
| 1440  | Summer               | 134.7                       | 0.0                            | 134.7                       | 110.3817                         | 0.3817                  | 181.4                                  | O K    |
| 2160  | Summer               | 101.3                       | 0.0                            | 101.3                       | 110.3117                         | 0.3117                  | 148.0                                  | O K    |
| 2880  | Summer               | 81.7                        | 0.0                            | 81.7                        | 110.2763                         | 0.2762                  | 131.2                                  | O K    |
| 4320  | Summer               | 59.3                        | 0.0                            | 59.3                        | 110.2408                         | 0.2408                  | 114.3                                  | ΟK     |
| 5760  | Summer               | 46.8                        | 0.0                            | 46.8                        | 110.2138                         | 0.2138                  | 101.4                                  | ΟK     |
| 7200  | Summer               | 39.0                        | 0.0                            | 39.0                        | 110.1927                         | 0.1928                  | 91.5                                   | O K    |
| 8640  | Summer               | 33.5                        | 0.0                            | 33.5                        | 110.1777                         | 0.1778                  | 84.4                                   | ΟK     |
| 10080 | Summer               | 29.6                        | 0.0                            | 29.6                        | 110.1673                         | 0.1673                  | 79.3                                   | ΟK     |
| 15    | Winter               | 469.4                       | 0.0                            | 469.4                       | 111.0593                         | 1.0593                  | 503.3                                  | O K    |
| 30    | Winter               | 523.2                       | 0.0                            | 523.2                       | 111.2552                         | 1.2553                  | 592.7                                  | ΟK     |
| 60    | Winter               | 515.9                       | 0.0                            | 515.9                       | 111.2272                         | 1.2273                  | 582.0                                  | ΟK     |
| 120   | Winter               | 452.5                       | 0.0                            | 452.5                       | 111.0018                         | 1.0018                  | 475.9                                  | O K    |
| 180   | Winter               | 393.0                       | 0.0                            | 393.0                       | 110.8173                         | 0.8173                  | 388.3                                  | O K    |
| 240   | Winter               | 347.5                       | 0.0                            | 347.5                       | 110.7023                         | 0.7023                  | 333.6                                  | O K    |

| Dura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | orm<br>ation<br>.ns)                                                                                                                                                   | Rain<br>(mm/hr)                                                                                                                                                                  | Time-Peak<br>(mins)                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| (mi<br>15<br>30<br>60<br>120<br>180<br>240<br>360<br>480<br>600<br>720<br>960<br>1440<br>2160<br>2880<br>4320<br>5760<br>7200<br>8640<br>1008<br>100<br>100<br>100<br>100<br>120<br>180<br>120<br>180<br>120<br>180<br>120<br>180<br>120<br>180<br>120<br>180<br>120<br>180<br>120<br>180<br>120<br>180<br>120<br>180<br>120<br>180<br>120<br>180<br>120<br>180<br>120<br>180<br>120<br>180<br>120<br>180<br>120<br>180<br>120<br>180<br>120<br>180<br>120<br>180<br>120<br>180<br>120<br>180<br>120<br>180<br>120<br>180<br>120<br>180<br>120<br>180<br>120<br>140<br>140<br>140<br>140<br>140<br>140<br>140<br>14 | Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer | 124.07<br>81.51<br>51.03<br>30.89<br>22.72<br>18.17<br>13.19<br>10.52<br>8.81<br>7.63<br>6.06<br>4.38<br>3.16<br>2.51<br>1.80<br>1.43<br>1.19<br>1.02<br>0.90<br>124.07<br>81.51 | 27<br>35<br>50<br>82<br>112<br>142<br>202<br>262<br>322<br>382<br>504<br>746<br>1108<br>1472<br>2204<br>2936<br>3664<br>4400<br>5128<br>27<br>36 |
| 60<br>120<br>180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Winter<br>Winter                                                                                                                                                       | 51.03<br>30.89<br>22.72<br>18.17                                                                                                                                                 | 52<br>84<br>114<br>142                                                                                                                           |

| Ove Arup & Partners Internationa | Page 2                    |  |
|----------------------------------|---------------------------|--|
| The Arup Campus                  | NFC                       |  |
| Blyth Gate                       | Cellular Storage          |  |
| Solihull B90 8AE                 |                           |  |
| Date 14/01/10                    | Designed By CDH           |  |
| File NFC 30%CC.CAS               | Checked By                |  |
| Micro Drainage                   | Source Control W.11.4 net |  |

# Cascade Summary of Results for cellular storage 30%cc.src

| Dura  | orm<br>ation<br>ins) | Maximum<br>Control<br>(1/s) | Maximum<br>Filtration<br>(l/s) | Maximum<br>Outflow<br>(1/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m) | Maximum<br>Volume<br>(m <sup>3</sup> ) | Status |
|-------|----------------------|-----------------------------|--------------------------------|-----------------------------|----------------------------------|-------------------------|----------------------------------------|--------|
| 360   | Winter               | 269.9                       | 0.0                            | 269.9                       | 110.5892                         | 0.5892                  | 279.9                                  | ΟK     |
| 480   | Winter               | 223.8                       | 0.0                            | 223.8                       | 110.5212                         | 0.5212                  | 247.6                                  | ΟK     |
| 600   | Winter               | 192.6                       | 0.0                            | 192.6                       | 110.4747                         | 0.4747                  | 225.5                                  | ΟK     |
| 720   | Winter               | 170.1                       | 0.0                            | 170.1                       | 110.4402                         | 0.4402                  | 209.1                                  | ΟK     |
| 960   | Winter               | 138.3                       | 0.0                            | 138.3                       | 110.3892                         | 0.3892                  | 184.9                                  | ΟK     |
| 1440  | Winter               | 102.5                       | 0.0                            | 102.5                       | 110.3142                         | 0.3142                  | 149.4                                  | ΟK     |
| 2160  | Winter               | 74.8                        | 0.0                            | 74.8                        | 110.2653                         | 0.2652                  | 126.1                                  | ΟK     |
| 2880  | Winter               | 59.6                        | 0.0                            | 59.6                        | 110.2412                         | 0.2412                  | 114.5                                  | ΟK     |
| 4320  | Winter               | 42.7                        | 0.0                            | 42.7                        | 110.2028                         | 0.2028                  | 96.2                                   | ΟK     |
| 5760  | Winter               | 33.8                        | 0.0                            | 33.8                        | 110.1787                         | 0.1788                  | 84.8                                   | ΟK     |
| 7200  | Winter               | 28.1                        | 0.0                            | 28.1                        | 110.1633                         | 0.1633                  | 77.5                                   | ΟK     |
| 8640  | Winter               | 24.1                        | 0.0                            | 24.1                        | 110.1523                         | 0.1523                  | 72.4                                   | ОК     |
| 10080 | Winter               | 21.2                        | 0.0                            | 21.2                        | 110.1413                         | 0.1413                  | 67.2                                   | ΟK     |

| Dura       | orm<br>tion<br>.ns) | Rain<br>(mm/hr) | Time-Peak<br>(mins) |
|------------|---------------------|-----------------|---------------------|
| 360        | Winter              | 13.19           | 204                 |
| 480<br>600 | Winter<br>Winter    | 10.52<br>8.81   | 264<br>324          |
|            | Winter              | 7.63            | 386                 |
| 960        | Winter              | 6.06            | 510                 |
| 1440       | Winter              | 4.38            | 750                 |
| 2160       | Winter              | 3.16            | 1108                |
| 2880       | Winter              | 2.51            | 1468                |
| 4320       | Winter              | 1.80            | 2204                |
| 5760       | Winter              | 1.43            | 2920                |
| 7200       | Winter              | 1.19            | 3600                |
| 8640       | Winter              | 1.02            | 4408                |
| 10080      | Winter              | 0.90            | 5144                |

| Ove Arup & Partners Internat | Page 3                    |  |
|------------------------------|---------------------------|--|
| The Arup Campus              | NFC                       |  |
| Blyth Gate                   | Cellular Storage          |  |
| Solihull B90 8AE             |                           |  |
| Date 14/01/10                | Designed By CDH           |  |
| File NFC 30%CC.CAS           | Checked By                |  |
| Micro Drainage               | Source Control W.11.4 net |  |

# Cascade Rainfall Details for cellular storage 30%cc.src

| Region                | ENG+WAL | Cv (Summer)           | 0.750 | Summer Storms    | Yes |
|-----------------------|---------|-----------------------|-------|------------------|-----|
| Return Period (years) | 100     | Cv (Winter)           | 0.840 | Winter Storms    | Yes |
| M5-60 (mm)            | 19.400  | Shortest Storm (mins) | 15    | Climate Change % | +30 |
| Ratio-R               | 0.400   | Longest Storm (mins)  | 10080 |                  |     |

### Time / Area Diagram

#### Total Area (ha) = 3.082

| Time   | (mins) | Area | Time  | (mins)   | Area | Time  | (mins) | Area  |
|--------|--------|------|-------|----------|------|-------|--------|-------|
| from:  | to:    | (ha) | from: | to:      | (ha) | from: | to:    | (ha)  |
| 0<br>4 |        |      |       | 12<br>16 |      |       | 20     | 0.770 |

| Ove Arup & Partners Internatio | Page 4                    |  |
|--------------------------------|---------------------------|--|
| The Arup Campus                | NFC                       |  |
| Blyth Gate                     | Cellular Storage          |  |
| Solihull B90 8AE               | _                         |  |
| Date 14/01/10                  | Designed By CDH           |  |
| File NFC 30%CC.CAS             | Checked By                |  |
| Micro Drainage                 | Source Control W.11.4 net |  |

### Cascade Storage Controls for cellular storage 30%cc.src

### Cellular Storage Details

| Infil Coef - Base (m/hr)  | 0.00000  | Porosity         | 0.95    |
|---------------------------|----------|------------------|---------|
| Infil Coef - Sides (m/hr) | 0.000000 | Invert Level (m) | 110.000 |
| Safety Factor             | 2.0      | Ground Level (m) | 112.000 |

| Depth<br>(m) | Area<br>(m²) | Infil.<br>Area<br>(m²) |
|--------------|--------------|------------------------|--------------|--------------|------------------------|--------------|--------------|------------------------|--------------|--------------|------------------------|
| 0.00         | 500.0        | 500.0                  | 1.40         | 0.0          | 616.3                  | 2.80         | 0.0          | 616.3                  | 4.20         | 0.0          | 616.3                  |
| 0.20         | 500.0        | 517.9                  | 1.60         | 0.0          | 616.3                  | 3.00         | 0.0          | 616.3                  | 4.40         | 0.0          | 616.3                  |
| 0.40         | 500.0        | 535.8                  | 1.80         | 0.0          | 616.3                  | 3.20         | 0.0          | 616.3                  | 4.60         | 0.0          | 616.3                  |
| 0.60         | 500.0        | 553.7                  | 2.00         | 0.0          | 616.3                  | 3.40         | 0.0          | 616.3                  | 4.80         | 0.0          | 616.3                  |
| 0.80         | 500.0        | 571.6                  | 2.20         | 0.0          | 616.3                  | 3.60         | 0.0          | 616.3                  | 5.00         | 0.0          | 616.3                  |
| 1.00         | 500.0        | 589.4                  | 2.40         | 0.0          | 616.3                  | 3.80         | 0.0          | 616.3                  |              |              |                        |
| 1.20         | 500.0        | 607.3                  | 2.60         | 0.0          | 616.3                  | 4.00         | 0.0          | 616.3                  |              |              |                        |

### Orifice Outflow Control

Diameter (m) 0.500 Discharge Coefficient 0.600 Invert Level (m) 110.000

| Ove Arup & Partners Intern | Page 1                    |  |
|----------------------------|---------------------------|--|
| The Arup Campus            | NFC                       |  |
| Blyth Gate                 | Car Park 3                |  |
| Solihull B90 8AE           |                           |  |
| Date 14/01/10              | Designed By CDH           |  |
| File NFC 30%CC.CAS         | Checked By                |  |
| Micro Drainage             | Source Control W.11.4 net |  |

### Cascade Summary of Results for car park 3 30%cc.src

| Upstream   | Outflow To | Overflow To |
|------------|------------|-------------|
| Structures | OUCTION TO | Overriow 10 |

(None) storage swale 3 30%.src (None)

Half Drain Time : 119 minutes

| Dura  | orm<br>ation<br>ins) | Maximum<br>Control<br>(l/s) | Maximum<br>Filtration<br>(l/s) | Maximum<br>Outflow<br>(l/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m) | Maximum<br>Volume<br>(m³) | Status     |
|-------|----------------------|-----------------------------|--------------------------------|-----------------------------|----------------------------------|-------------------------|---------------------------|------------|
|       | Summer               | 14.2                        | 0.0                            | 14.2                        | 113.6277                         | 0.3777                  | 132.8                     | O K        |
| 30    | Summer               | 17.1                        | 0.0                            | 17.1                        | 113.7007                         | 0.4507                  | 170.8                     | O K        |
| 60    | Summer               | 19.2                        | 0.0                            | 19.2                        | 113.7607                         | 0.5107                  | 202.0                     | O K        |
|       | Summer               | 20.2                        | 0.0                            | 20.2                        | 113.7937                         | 0.5437                  | 219.3                     | O K        |
| 180   | Summer               | 20.5                        | 0.0                            | 20.5                        | 113.8032                         | 0.5532                  | 224.2                     | FLOOD RISK |
| 240   | Summer               | 20.5                        | 0.0                            | 20.5                        | 113.8032                         | 0.5532                  | 224.2                     | FLOOD RISK |
| 360   | Summer               | 20.1                        | 0.0                            | 20.1                        | 113.7912                         | 0.5412                  | 218.0                     | O K        |
| 480   | Summer               | 19.6                        | 0.0                            | 19.6                        | 113.7747                         | 0.5247                  | 209.5                     | O K        |
| 600   | Summer               | 19.1                        | 0.0                            | 19.1                        | 113.7567                         | 0.5067                  | 200.1                     | O K        |
| 720   | Summer               | 18.5                        | 0.0                            | 18.5                        | 113.7387                         | 0.4887                  | 190.7                     | O K        |
| 960   | Summer               | 17.3                        | 0.0                            | 17.3                        | 113.7057                         | 0.4557                  | 173.4                     | O K        |
| 1440  | Summer               | 15.3                        | 0.0                            | 15.3                        | 113.6537                         | 0.4037                  | 146.3                     | O K        |
| 2160  | Summer               | 13.1                        | 0.0                            | 13.1                        | 113.6037                         | 0.3537                  | 120.2                     | O K        |
| 2880  | Summer               | 11.4                        | 0.0                            | 11.4                        | 113.5762                         | 0.3262                  | 105.9                     | O K        |
| 4320  | Summer               | 8.6                         | 0.0                            | 8.6                         | 113.5457                         | 0.2957                  | 90.0                      | O K        |
| 5760  | Summer               | 7.0                         | 0.0                            | 7.0                         | 113.5277                         | 0.2777                  | 80.6                      | O K        |
| 7200  | Summer               | 5.9                         | 0.0                            | 5.9                         | 113.5153                         | 0.2652                  | 74.1                      | ОК         |
| 8640  | Summer               | 5.2                         | 0.0                            | 5.2                         | 113.5062                         | 0.2562                  | 69.2                      | O K        |
| 10080 | Summer               | 4.5                         | 0.0                            | 4.5                         | 113.4977                         | 0.2477                  | 64.9                      | O K        |
| 15    | Winter               | 15.6                        | 0.0                            | 15.6                        | 113.6602                         | 0.4102                  | 149.8                     | ОК         |
| 30    | Winter               | 18.6                        | 0.0                            | 18.6                        | 113.7432                         | 0.4932                  | 192.9                     | O K        |
| 60    | Winter               | 20.8                        | 0.0                            | 20.8                        | 113.8118                         | 0.5617                  | 228.7                     | FLOOD RISK |
| 120   | Winter               | 21.8                        | 0.0                            | 21.8                        | 113.8463                         | 0.5963                  | 246.7                     | FLOOD RISK |
| 180   | Winter               | 21.9                        | 0.0                            | 21.9                        | 113.8518                         | 0.6018                  | 249.5                     | FLOOD RISK |
| 240   | Winter               | 21.7                        | 0.0                            | 21.7                        | 113.8447                         | 0.5948                  | 246.1                     | FLOOD RISK |
| 360   | Winter               | 21.0                        | 0.0                            | 21.0                        | 113.8193                         | 0.5692                  | 232.6                     | FLOOD RISK |
| 480   | Winter               | 20.1                        | 0.0                            | 20.1                        | 113.7902                         | 0.5402                  | 217.6                     | 0 K        |

| Dura     | orm<br>ation<br>.ns) | Rain<br>(mm/hr) | Time-Peak<br>(mins) |
|----------|----------------------|-----------------|---------------------|
| 15<br>30 |                      | 124.07<br>81.51 | 24<br>37            |
| 60       |                      | 51.03           | 64                  |
| 120      |                      | 30.89           | 100                 |
| 180      |                      | 22.72           | 132                 |
|          | Summer               | 18.17           | 166                 |
|          | Summer               | 13.19           | 234                 |
| 480      |                      | 10.52           | 300                 |
| 600      | Summer               | 8.81            | 366                 |
| 720      | Summer               | 7.63            | 430                 |
| 960      | Summer               | 6.06            | 556                 |
| 1440     | Summer               | 4.38            | 800                 |
|          | Summer               | 3.16            | 1152                |
| 2880     |                      | 2.51            | 1504                |
| 4320     |                      | 1.80            | 2244                |
| 5760     |                      | 1.43            | 2944                |
|          | Summer               | 1.19            | 3680                |
| 8640     |                      | 1.02            | 4416                |
|          | Summer               | 0.90            | 5144                |
|          | Winter               | 124.07          | 24                  |
| ~ ~      | Winter               | 81.51           | 37                  |
|          | Winter               | 51.03           | 64                  |
|          | Winter<br>Winter     | 30.89           | 104<br>142          |
|          |                      | 22.72           | 142                 |
|          | Winter<br>Winter     | 18.17<br>13.19  | 252                 |
|          | Winter               | 10.52           | 322                 |
| 400      | WINCEL               | 10.52           | 522                 |

| Ove Arup & Partners Internat | tional Ltd                | Page 2   |
|------------------------------|---------------------------|----------|
| The Arup Campus              | NFC                       |          |
| Blyth Gate                   | Car Park 3                |          |
| Solihull B90 8AE             |                           |          |
| Date 14/01/10                | Designed By CDH           | DRATABOR |
| File NFC 30%CC.CAS           | Checked By                |          |
| Micro Drainage               | Source Control W.11.4 net |          |

# Cascade Summary of Results for car park 3 30%cc.src

| Storm<br>Duration<br>(mins) | Maximum<br>Control<br>(l/s) | Maximum<br>Filtration<br>(l/s) | Maximum<br>Outflow<br>(l/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m) | Maximum<br>Volume<br>(m <sup>3</sup> ) | Status |
|-----------------------------|-----------------------------|--------------------------------|-----------------------------|----------------------------------|-------------------------|----------------------------------------|--------|
| 600 Winter                  | 19.2                        | 0.0                            | 19.2                        | 113.7622                         | 0.5122                  | 202.8                                  | ΟK     |
| 720 Winter                  | 18.4                        | 0.0                            | 18.4                        | 113.7357                         | 0.4857                  | 189.0                                  | ΟK     |
| 960 Winter                  | 16.7                        | 0.0                            | 16.7                        | 113.6897                         | 0.4397                  | 165.1                                  | ОК     |
| 1440 Winter                 | 14.1                        | 0.0                            | 14.1                        | 113.6247                         | 0.3747                  | 131.1                                  | O K    |
| 2160 Winter                 | 11.3                        | 0.0                            | 11.3                        | 113.5747                         | 0.3247                  | 105.2                                  | ΟK     |
| 2880 Winter                 | 9.1                         | 0.0                            | 9.1                         | 113.5512                         | 0.3012                  | 92.8                                   | ОК     |
| 4320 Winter                 | 6.7                         | 0.0                            | 6.7                         | 113.5237                         | 0.2737                  | 78.5                                   | ΟK     |
| 5760 Winter                 | 5.3                         | 0.0                            | 5.3                         | 113.5082                         | 0.2582                  | 70.3                                   | ОК     |
| 7200 Winter                 | 4.4                         | 0.0                            | 4.4                         | 113.4958                         | 0.2457                  | 63.7                                   | ОК     |
| 8640 Winter                 | 3.8                         | 0.0                            | 3.8                         | 113.4863                         | 0.2362                  | 58.9                                   | ОК     |
| 10080 Winter                | 3.4                         | 0.0                            | 3.4                         | 113.4792                         | 0.2292                  | 55.5                                   | O K    |

| Storm<br>Duration<br>(mins) |        | Rain<br>(mm/hr) | Time-Peak<br>(mins) |
|-----------------------------|--------|-----------------|---------------------|
| 600                         | Winter | 8.81            | 390                 |
| 720                         | Winter | 7.63            | 456                 |
| 960                         | Winter | 6.06            | 582                 |
| 1440                        | Winter | 4.38            | 824                 |
| 2160                        | Winter | 3.16            | 1168                |
| 2880                        | Winter | 2.51            | 1532                |
| 4320                        | Winter | 1.80            | 2252                |
| 5760                        | Winter | 1.43            | 2992                |
| 7200                        | Winter | 1.19            | 3688                |
| 8640                        | Winter | 1.02            | 4416                |
| 10080                       | Winter | 0.90            | 5144                |

| Ove Arup & Partners Interna | tional Ltd                | Page 3 |
|-----------------------------|---------------------------|--------|
| The Arup Campus             | NFC                       |        |
| Blyth Gate                  | Car Park 3                |        |
| Solihull B90 8AE            |                           |        |
| Date 14/01/10               | Designed By CDH           |        |
| File NFC 30%CC.CAS          | Checked By                |        |
| Micro Drainage              | Source Control W.11.4 net |        |

# Cascade Rainfall Details for car park 3 30%cc.src

| Region                | ENG+WAL | Cv (Summer)           | 0.750 | Summer Storms    | Yes |
|-----------------------|---------|-----------------------|-------|------------------|-----|
| Return Period (years) | 100     | Cv (Winter)           | 0.840 | Winter Storms    | Yes |
| M5-60 (mm)            | 19.400  | Shortest Storm (mins) | 15    | Climate Change % | +30 |
| Ratio-R               | 0.400   | Longest Storm (mins)  | 10080 |                  |     |

### Time / Area Diagram

### Total Area (ha) = 0.647

| Time  | (mins) | Area  | Time  | (mins) | Area  | Time  | (mins) | Area  |
|-------|--------|-------|-------|--------|-------|-------|--------|-------|
| from: | to:    | (ha)  | from: | to:    | (ha)  | from: | to:    | (ha)  |
| 0     | 4      | 0.176 | 4     | 8      | 0.235 | 8     | 12     | 0.236 |

| Ove Arup & Partners Internatio | onal Ltd                  | Page 4 |
|--------------------------------|---------------------------|--------|
| The Arup Campus                | NFC                       |        |
| Blyth Gate                     | Car Park 3                |        |
| Solihull B90 8AE               |                           |        |
| Date 14/01/10                  | Designed By CDH           |        |
| File NFC 30%CC.CAS             | Checked By                |        |
| Micro Drainage                 | Source Control W.11.4 net |        |

### Cascade Storage Controls for car park 3 30%cc.src

#### Porous Car Park Details

| Infil Coef - Base (m/hr)     | 0.000000 | Invert Level (m)        | 113.250 |
|------------------------------|----------|-------------------------|---------|
| Membrane Percolation (mm/hr) | 1000     | Cover Level (m)         | 114.000 |
| Safety Factor                | 2.0      | Slope (1:x)             | 150.0   |
| Porosity                     | 0.30     | Max Percolation (l/s)   | 483.1   |
| Length (m)                   | 37.0     | Depression Storage (mm) | 5       |
| Width (m)                    | 47.0     | Evaporation (mm/day)    | 3       |

#### Orifice Outflow Control

Diameter (m) 0.130 Discharge Coefficient 0.600 Invert Level (m) 113.400

#### Cascade Summary of Results for storage swale 7 30%cc.src

| Upstream   | Outflow To | Overflow To |
|------------|------------|-------------|
| Structures | OULTION TO | OVEILIOW IO |

(None) storage swale 2 30%cc.src (None)

Half Drain Time : 13 minutes

| Dura  | orm<br>ation<br>.ns) | Maximum<br>Control<br>(l/s) | Maximum<br>Filtration<br>(l/s) | Maximum<br>Outflow<br>(l/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m) | Maximum<br>Volume<br>(m³) | Status |
|-------|----------------------|-----------------------------|--------------------------------|-----------------------------|----------------------------------|-------------------------|---------------------------|--------|
| 15    | Summer               | 12.6                        | 0.0                            | 12.6                        | 117.7107                         | 0.3107                  | 13.3                      | ОК     |
| 30    | Summer               | 12.7                        | 0.0                            | 12.7                        | 117.7178                         | 0.3177                  | 14.0                      | ОК     |
| 60    | Summer               | 12.6                        | 0.0                            | 12.6                        | 117.7032                         | 0.3032                  | 12.5                      | ОК     |
| 120   | Summer               | 12.4                        | 0.0                            | 12.4                        | 117.6537                         | 0.2537                  | 8.1                       | ОК     |
| 180   | Summer               | 12.1                        | 0.0                            | 12.1                        | 117.5963                         | 0.1962                  | 4.4                       | ОК     |
| 240   | Summer               | 11.7                        | 0.0                            | 11.7                        | 117.5363                         | 0.1363                  | 1.9                       | ОК     |
| 360   | Summer               | 10.9                        | 0.0                            | 10.9                        | 117.4000                         | 0.0000                  | 0.0                       | ОК     |
| 480   | Summer               | 8.7                         | 0.0                            | 8.7                         | 117.4000                         | 0.0000                  | 0.0                       | ОК     |
| 600   | Summer               | 7.3                         | 0.0                            | 7.3                         | 117.4000                         | 0.0000                  | 0.0                       | ОК     |
| 720   | Summer               | 6.3                         | 0.0                            | 6.3                         | 117.4000                         | 0.0000                  | 0.0                       | ОК     |
| 960   | Summer               | 5.0                         | 0.0                            | 5.0                         | 117.4000                         | 0.0000                  | 0.0                       | ΟK     |
| 1440  | Summer               | 3.6                         | 0.0                            | 3.6                         | 117.4000                         | 0.0000                  | 0.0                       | ΟK     |
| 2160  | Summer               | 2.6                         | 0.0                            | 2.6                         | 117.4000                         | 0.0000                  | 0.0                       | ΟK     |
| 2880  | Summer               | 2.1                         | 0.0                            | 2.1                         | 117.4000                         | 0.0000                  | 0.0                       | ΟK     |
| 4320  | Summer               | 1.5                         | 0.0                            | 1.5                         | 117.4000                         | 0.0000                  | 0.0                       | ΟK     |
| 5760  | Summer               | 1.2                         | 0.0                            | 1.2                         | 117.4000                         | 0.0000                  | 0.0                       | ΟK     |
| 7200  | Summer               | 1.0                         | 0.0                            | 1.0                         | 117.4000                         | 0.0000                  | 0.0                       | ΟK     |
| 8640  | Summer               | 0.8                         | 0.0                            | 0.8                         | 117.4000                         | 0.0000                  | 0.0                       | ΟK     |
| 10080 | Summer               | 0.7                         | 0.0                            | 0.7                         | 117.4000                         | 0.0000                  | 0.0                       | ΟK     |
| 15    | Winter               | 12.8                        | 0.0                            | 12.8                        | 117.7332                         | 0.3332                  | 15.7                      | ΟK     |
| 30    | Winter               | 12.8                        | 0.0                            | 12.8                        | 117.7383                         | 0.3382                  | 16.3                      | O K    |
| 60    | Winter               | 12.7                        | 0.0                            | 12.7                        | 117.7132                         | 0.3132                  | 13.5                      | O K    |
| 120   | Winter               | 12.3                        | 0.0                            | 12.3                        | 117.6338                         | 0.2337                  | 6.6                       | O K    |
| 180   | Winter               | 11.7                        | 0.0                            | 11.7                        | 117.5318                         | 0.1318                  | 1.8                       | ΟK     |
|       |                      | 10.8                        | 0.0                            | 10.8                        | 117.4000                         | 0.0000                  | 0.0                       | O K    |
|       | Winter               | 7.9                         | 0.0                            | 7.9                         | 117.4000                         | 0.0000                  | 0.0                       | O K    |
| 480   | Winter               | 6.3                         | 0.0                            | 6.3                         | 117.4000                         | 0.0000                  | 0.0                       | O K    |

| Dura                                                                                                                                                                             | orm<br>Ition<br>Ins)                                                                                                 | Rain Time-Pea<br>(mm/hr) (mins)                                                                                                                                                                              |                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| 30<br>60<br>120<br>180<br>240<br>360<br>480<br>720<br>960<br>1440<br>2160<br>2880<br>4320<br>5760<br>7200<br>8640<br>10080<br>15<br>30<br>60<br>120<br>120<br>8640<br>120<br>120 | Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer | 124.07 $81.51$ $51.03$ $30.89$ $22.72$ $18.17$ $13.19$ $10.52$ $8.81$ $7.63$ $6.06$ $4.38$ $3.16$ $2.51$ $1.80$ $1.43$ $1.19$ $1.02$ $0.90$ $124.07$ $81.51$ $51.03$ $30.89$ $22.72$ $18.17$ $13.19$ $10.52$ | $ \begin{array}{c} 14\\ 23\\ 40\\ 72\\ 102\\ 130\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$ |
|                                                                                                                                                                                  |                                                                                                                      |                                                                                                                                                                                                              |                                                                                                       |

| Ove Arup & Partners Interna | tional Ltd                | Page 2 |
|-----------------------------|---------------------------|--------|
| The Arup Campus             | NFC                       |        |
| Blyth Gate                  | Storage Swale 7           |        |
| Solihull B90 8AE            |                           |        |
| Date 14/01/10               | Designed By CDH           |        |
| File NFC 30%CC.CAS          | Checked By                |        |
| Micro Drainage              | Source Control W.11.4 net |        |

# Cascade Summary of Results for storage swale 7 30%cc.src

| Dura  | orm<br>Ition<br>Ins) | Maximum<br>Control<br>(l/s) | Maximum<br>Filtration<br>(1/s) | Maximum<br>Outflow<br>(1/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m) | Maximum<br>Volume<br>(m <sup>3</sup> ) | Status |
|-------|----------------------|-----------------------------|--------------------------------|-----------------------------|----------------------------------|-------------------------|----------------------------------------|--------|
| 600   | Winter               | 5.3                         | 0.0                            | 5.3                         | 117.4000                         | 0.0000                  | 0.0                                    | ОК     |
| 720   | Winter               | 4.5                         | 0.0                            | 4.5                         | 117.4000                         | 0.0000                  | 0.0                                    | ΟK     |
| 960   | Winter               | 3.6                         | 0.0                            | 3.6                         | 117.4000                         | 0.0000                  | 0.0                                    | ОК     |
| 1440  | Winter               | 2.6                         | 0.0                            | 2.6                         | 117.4000                         | 0.0000                  | 0.0                                    | ОК     |
| 2160  | Winter               | 1.9                         | 0.0                            | 1.9                         | 117.4000                         | 0.0000                  | 0.0                                    | ОК     |
| 2880  | Winter               | 1.5                         | 0.0                            | 1.5                         | 117.4000                         | 0.0000                  | 0.0                                    | ОК     |
| 4320  | Winter               | 1.1                         | 0.0                            | 1.1                         | 117.4000                         | 0.0000                  | 0.0                                    | ОК     |
| 5760  | Winter               | 0.9                         | 0.0                            | 0.9                         | 117.4000                         | 0.0000                  | 0.0                                    | ОК     |
| 7200  | Winter               | 0.7                         | 0.0                            | 0.7                         | 117.4000                         | 0.0000                  | 0.0                                    | ОК     |
| 8640  | Winter               | 0.6                         | 0.0                            | 0.6                         | 117.4000                         | 0.0000                  | 0.0                                    | ОК     |
| 10080 | Winter               | 0.5                         | 0.0                            | 0.5                         | 117.4000                         | 0.0000                  | 0.0                                    | O K    |

| Dura  | orm<br>ation<br>ins) | Rain<br>(mm/hr) | Time-Peak<br>(mins) |
|-------|----------------------|-----------------|---------------------|
| 600   | Winter               | 8.81            | 0                   |
| 720   | Winter               | 7.63            | 0                   |
| 960   | Winter               | 6.06            | 0                   |
| 1440  | Winter               | 4.38            | 0                   |
| 2160  | Winter               | 3.16            | 0                   |
| 2880  | Winter               | 2.51            | 0                   |
| 4320  | Winter               | 1.80            | 0                   |
| 5760  | Winter               | 1.43            | 0                   |
| 7200  | Winter               | 1.19            | 0                   |
| 8640  | Winter               | 1.02            | 0                   |
| 10080 | Winter               | 0.90            | 0                   |

| Ove Arup & Partners Internati | onal Ltd                  | Page 3 |
|-------------------------------|---------------------------|--------|
| The Arup Campus               | NFC                       |        |
| Blyth Gate                    | Storage Swale 7           |        |
| Solihull B90 8AE              |                           |        |
| Date 14/01/10                 | Designed By CDH           |        |
| File NFC 30%CC.CAS            | Checked By                |        |
| Micro Drainage                | Source Control W.11.4 net |        |

# Cascade Rainfall Details for storage swale 7 30%cc.src

| Region                | ENG+WAL | Cv (Summer)           | 0.750 | Summer Storms    | Yes |
|-----------------------|---------|-----------------------|-------|------------------|-----|
| Return Period (years) | 100     | Cv (Winter)           | 0.840 | Winter Storms    | Yes |
| M5-60 (mm)            | 19.400  | Shortest Storm (mins) | 15    | Climate Change % | +30 |
| Ratio-R               | 0.400   | Longest Storm (mins)  | 10080 |                  |     |

Time / Area Diagram

Total Area (ha) = 0.101

| Time  | (mins) | Area |
|-------|--------|------|
| from: | to:    | (ha) |

0 4 0.101

| Ove Arup & Partners Internation | al Ltd                    | Page 4 |
|---------------------------------|---------------------------|--------|
| The Arup Campus                 | NFC                       |        |
| Blyth Gate                      | Storage Swale 7           |        |
| Solihull B90 8AE                |                           |        |
| Date 14/01/10                   | Designed By CDH           |        |
| File NFC 30%CC.CAS              | Checked By                |        |
| Micro Drainage                  | Source Control W.11.4 net |        |

# Cascade Storage Controls for storage swale 7 30%cc.src

## Swale Details

| Infil Coef - Base (m/hr)  | 0.000000 | Length (m)       | 140.0   |
|---------------------------|----------|------------------|---------|
| Infil Coef - Sides (m/hr) | 0.000000 | Side Slope (1:x) | 4.0     |
| Safety Factor             | 2.0      | Invert Level (m) | 117.400 |
| Porosity                  | 1.00     | Cover Level (m)  | 118.000 |
| Base Width (m)            | 1.0      | Slope (1:x)      | 150.0   |

# Pipe Outflow Control

| Pipe Diameter (m) | 0.100  | Roughness (mm)      | 0.600 | Invert Level | (m) | 116.500 |
|-------------------|--------|---------------------|-------|--------------|-----|---------|
| Slope (1:x)       | 150.0  | Entry Loss Coef     | 0.500 |              |     |         |
| Length (m)        | 25.000 | Coef of Contraction | 0.600 |              |     |         |

| The Arup CampusNFCBlyth GateSwale 3Solihull B90 8AE800 DeepDate 14/01/10Designed By CDHFile NEC 30%CC CDSChecked By | Ove Arup & Partners International | Ltd                       | Page 1     |
|---------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------|------------|
| Solihull B90 8AE800 DeepDate 14/01/10Designed By CDH                                                                | The Arup Campus                   | NFC                       |            |
| Date 14/01/10 Designed By CDH                                                                                       | Blyth Gate                        | Swale 3                   |            |
|                                                                                                                     | Solihull B90 8AE                  | 800 Deep                  |            |
| File NEC 30%CC CAS Checked By                                                                                       | Date 14/01/10                     | Designed By CDH           | Dentración |
|                                                                                                                     | File NFC 30%CC.CAS                | Checked By                |            |
| Micro Drainage Source Control W.11.4 net                                                                            | Micro Drainage                    | Source Control W.11.4 net |            |

## Cascade Summary of Results for storage swale 3 30%.src

| Upstream   |  |
|------------|--|
| Structures |  |

Outflow To

Overflow To

car park 3 30%cc.src storage swale 4 30%cc.src storage swale 4 30%cc.src
cellular storage 30%cc.src
car park 1 30%cc.src
car park 2 30%cc.src
storage swale 2 30%cc.src
storage swale 7 30%cc.src

#### Half Drain Time : 122 minutes

| Dura  | orm<br>ition<br>.ns) | Maximum<br>Control<br>(l/s) | Maximum<br>Filtration<br>(1/s) | Maximum<br>Overflow<br>(1/s) | Maximum<br>Outflow<br>(l/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m) | Overflow<br>Volume<br>(m <sup>3</sup> ) | Maximum<br>Volume<br>(m³) | Status     |
|-------|----------------------|-----------------------------|--------------------------------|------------------------------|-----------------------------|----------------------------------|-------------------------|-----------------------------------------|---------------------------|------------|
| 15    | Summer               | 65.6                        | 0.0                            | 180.3                        | 245.9                       | 111.2178                         | 0.7178                  | 290.5                                   | 723.5                     | FLOOD RISK |
| 30    | Summer               | 67.6                        | 0.0                            | 349.1                        | 416.7                       | 111.2553                         | 0.7553                  | 637.5                                   | 794.4                     | FLOOD RISK |
| 60    | Summer               | 68.7                        | 0.0                            | 458.6                        | 527.3                       | 111.2763                         | 0.7763                  | 996.3                                   | 836.1                     | FLOOD RISK |
| 120   | Summer               | 68.9                        | 0.0                            | 488.9                        | 557.9                       | 111.2818                         | 0.7818                  | 1344.0                                  | 848.2                     | FLOOD RISK |
| 180   | Summer               | 68.9                        | 0.0                            | 480.6                        | 549.5                       | 111.2803                         | 0.7803                  | 1520.6                                  | 844.0                     | FLOOD RISK |
| 240   | Summer               | 68.6                        | 0.0                            | 447.8                        | 516.3                       | 111.2743                         | 0.7743                  | 1615.8                                  | 832.9                     | FLOOD RISK |
| 360   | Summer               | 67.9                        | 0.0                            | 376.8                        | 444.7                       | 111.2608                         | 0.7608                  | 1671.5                                  | 806.1                     | FLOOD RISK |
| 480   | Summer               | 67.3                        | 0.0                            | 319.7                        | 387.0                       | 111.2493                         | 0.7493                  | 1645.0                                  | 782.7                     | FLOOD RISK |
| 600   | Summer               | 66.8                        | 0.0                            | 274.9                        | 341.7                       | 111.2398                         | 0.7398                  | 1590.4                                  | 764.8                     | FLOOD RISK |
| 720   | Summer               | 66.4                        | 0.0                            | 241.2                        | 307.6                       | 111.2323                         | 0.7323                  | 1533.5                                  | 750.3                     | FLOOD RISK |
| 960   | Summer               | 65.8                        | 0.0                            | 192.4                        | 258.2                       | 111.2208                         | 0.7208                  | 1417.0                                  | 728.6                     | FLOOD RISK |
| 1440  | Summer               | 65.0                        | 0.0                            | 132.8                        | 197.7                       | 111.2053                         | 0.7053                  | 1179.8                                  | 699.5                     | FLOOD RISK |
| 2160  | Summer               | 64.2                        | 0.0                            | 85.7                         | 149.9                       | 111.1913                         | 0.6913                  | 839.2                                   | 674.1                     | FLOOD RISK |
| 2880  | Summer               | 63.7                        | 0.0                            | 56.5                         | 120.1                       | 111.1813                         | 0.6813                  | 539.3                                   | 657.0                     | FLOOD RISK |
| 4320  | Summer               | 62.7                        | 0.0                            | 15.6                         | 78.3                        | 111.1633                         | 0.6633                  | 100.4                                   | 624.5                     | FLOOD RISK |
| 5760  | Summer               | 57.6                        | 0.0                            | 0.0                          | 57.6                        | 111.0758                         | 0.5757                  | 0.0                                     | 482.0                     | O K        |
|       |                      | 51.6                        | 0.0                            | 0.0                          | 51.6                        | 110.9817                         | 0.4817                  | 0.0                                     | 348.5                     | O K        |
|       | Summer               | 46.5                        | 0.0                            | 0.0                          | 46.5                        | 110.9102                         | 0.4102                  | 0.0                                     | 261.9                     | O K        |
| 10080 |                      | 42.3                        | 0.0                            | 0.0                          | 42.3                        | 110.8568                         | 0.3567                  | 0.0                                     | 205.0                     | O K        |
|       | Winter               | 66.6                        | 0.0                            | 256.7                        | 323.3                       | 111.2358                         | 0.7358                  | 424.7                                   | 757.3                     | FLOOD RISK |
|       | Winter               | 68.2                        | 0.0                            | 413.1                        | 481.3                       | 111.2678                         | 0.7678                  | 815.1                                   | 819.7                     | FLOOD RISK |
| 60    |                      | 69.3                        | 0.0                            | 528.4                        | 597.7                       | 111.2888                         | 0.7888                  | 1220.4                                  | 861.7                     | FLOOD RISK |
|       | Winter               | 69.4                        | 0.0                            | 539.9                        | 609.3                       | 111.2908                         | 0.7908                  | 1618.1                                  | 865.9                     | FLOOD RISK |
| 180   | Winter               | 68.9                        | 0.0                            | 483.4                        | 552.3                       | 111.2808                         | 0.7808                  | 1825.9                                  | 845.6                     | FLOOD RISK |

| Dura                                                                                   | orm<br>ation<br>.ns)                                                                                                                                                             | Rain<br>(mm/hr)                                                                                                                                                                                           | Time-Peak<br>(mins)                                                                                                                                          |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 960<br>1440<br>2160<br>2880<br>4320<br>5760<br>7200<br>8640<br>10080<br>15<br>30<br>60 | Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer | 124.07<br>81.51<br>51.03<br>30.89<br>22.72<br>18.17<br>13.19<br>10.52<br>8.81<br>7.63<br>6.06<br>4.38<br>3.16<br>2.51<br>1.80<br>1.43<br>1.19<br>1.02<br>0.90<br>124.07<br>81.51<br>51.03<br><b>30.89</b> | 41<br>46<br>60<br>86<br>116<br>146<br>204<br>264<br>326<br>386<br>506<br>750<br>1108<br>1480<br>2276<br>3080<br>3776<br>4496<br>5176<br>39<br>44<br>58<br>86 |
| 180                                                                                    | Winter                                                                                                                                                                           | 22.72                                                                                                                                                                                                     | 116                                                                                                                                                          |

| Ove Arup & Partners Intern | national Ltd              | Page 2 |
|----------------------------|---------------------------|--------|
| The Arup Campus            | NFC                       |        |
| Blyth Gate                 | Swale 3                   |        |
| Solihull B90 8AE           | 800 Deep                  |        |
| Date 14/01/10              | Designed By CDH           |        |
| File NFC 30%CC.CAS         | Checked By                |        |
| Micro Drainage             | Source Control W.11.4 net |        |

# Cascade Summary of Results for storage swale 3 30%.src

| Dura  | orm<br>ation<br>.ns) | Maximum<br>Control<br>(1/s) | Maximum<br>Filtration<br>(1/s) | Maximum<br>Overflow<br>(1/s) | Maximum<br>Outflow<br>(1/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m) | Overflow<br>Volume<br>(m <sup>3</sup> ) | Maximum<br>Volume<br>(m³) | Status     |
|-------|----------------------|-----------------------------|--------------------------------|------------------------------|-----------------------------|----------------------------------|-------------------------|-----------------------------------------|---------------------------|------------|
| 240   | Winter               | 68.3                        | 0.0                            | 423.7                        | 492.0                       | 111.2698                         | 0.7698                  | 1945.3                                  | 823.3                     | FLOOD RISK |
| 360   | Winter               | 67.3                        | 0.0                            | 322.1                        | 389.4                       | 111.2498                         | 0.7498                  | 2039.5                                  | 784.4                     | FLOOD RISK |
| 480   | Winter               | 66.6                        | 0.0                            | 259.0                        | 325.6                       | 111.2363                         | 0.7363                  | 2033.1                                  | 758.2                     | FLOOD RISK |
| 600   | Winter               | 66.1                        | 0.0                            | 215.3                        | 281.4                       | 111.2263                         | 0.7263                  | 1970.1                                  | 739.4                     | FLOOD RISK |
| 720   | Winter               | 65.7                        | 0.0                            | 184.3                        | 250.0                       | 111.2188                         | 0.7188                  | 1885.7                                  | 724.5                     | FLOOD RISK |
| 960   | Winter               | 65.1                        | 0.0                            | 140.1                        | 205.1                       | 111.2073                         | 0.7073                  | 1719.3                                  | 703.2                     | FLOOD RISK |
| 1440  | Winter               | 64.3                        | 0.0                            | 88.8                         | 153.1                       | 111.1923                         | 0.6923                  | 1354.6                                  | 676.0                     | FLOOD RISK |
| 2160  | Winter               | 63.5                        | 0.0                            | 49.8                         | 113.4                       | 111.1788                         | 0.6788                  | 822.8                                   | 651.6                     | FLOOD RISK |
| 2880  | Winter               | 63.0                        | 0.0                            | 26.3                         | 89.2                        | 111.1688                         | 0.6688                  | 380.9                                   | 634.7                     | FLOOD RISK |
| 4320  | Winter               | 58.1                        | 0.0                            | 0.0                          | 58.1                        | 111.0837                         | 0.5838                  | 0.0                                     | 494.3                     | ΟK         |
| 5760  | Winter               | 48.8                        | 0.0                            | 0.0                          | 48.8                        | 110.9412                         | 0.4412                  | 0.0                                     | 297.9                     | O K        |
| 7200  | Winter               | 41.7                        | 0.0                            | 0.0                          | 41.7                        | 110.8497                         | 0.3497                  | 0.0                                     | 197.5                     | O K        |
| 8640  | Winter               | 36.5                        | 0.0                            | 0.0                          | 36.5                        | 110.7907                         | 0.2907                  | 0.0                                     | 143.6                     | ОК         |
| 10080 | Winter               | 32.3                        | 0.0                            | 0.0                          | 32.3                        | 110.7643                         | 0.2642                  | 0.0                                     | 122.2                     | O K        |

| Dura  | orm<br>ation<br>.ns) | Rain<br>(mm/hr) | Time-Peak<br>(mins) |
|-------|----------------------|-----------------|---------------------|
| 240   | Winter               | 18.17           | 146                 |
| 360   | Winter               | 13.19           | 206                 |
| 480   | Winter               | 10.52           | 268                 |
| 600   | Winter               | 8.81            | 330                 |
| 720   | Winter               | 7.63            | 394                 |
| 960   | Winter               | 6.06            | 510                 |
| 1440  | Winter               | 4.38            | 756                 |
| 2160  | Winter               | 3.16            | 1120                |
| 2880  | Winter               | 2.51            | 1500                |
| 4320  | Winter               | 1.80            | 2424                |
| 5760  | Winter               | 1.43            | 3112                |
| 7200  | Winter               | 1.19            | 3768                |
| 8640  | Winter               | 1.02            | 4456                |
| 10080 | Winter               | 0.90            | 5152                |

| l Ltd                     | Page 3                                               |
|---------------------------|------------------------------------------------------|
| NFC                       |                                                      |
| Swale 3                   |                                                      |
| 800 Deep                  |                                                      |
| Designed By CDH           |                                                      |
| Checked By                |                                                      |
| Source Control W.11.4 net |                                                      |
|                           | Swale 3<br>800 Deep<br>Designed By CDH<br>Checked By |

# Cascade Rainfall Details for storage swale 3 30%.src

| Region                | ENG+WAL | Cv (Summer)           | 0.750 | Summer Storms    | Yes |
|-----------------------|---------|-----------------------|-------|------------------|-----|
| Return Period (years) | 100     | Cv (Winter)           | 0.840 | Winter Storms    | Yes |
| M5-60 (mm)            | 19.400  | Shortest Storm (mins) | 15    | Climate Change % | +30 |
| Ratio-R               | 0.400   | Longest Storm (mins)  | 10080 |                  |     |

# Time / Area Diagram

## Total Area (ha) = 1.352

| Time  | (mins) | Area  | Time  | (mins) | Area  | Time  | (mins) | Area  |
|-------|--------|-------|-------|--------|-------|-------|--------|-------|
| from: | to:    | (ha)  | from: | to:    | (ha)  | from: | to:    | (ha)  |
| 0     | 4      | 0.000 | 4     | 8      | 0.676 | 8     | 12     | 0.676 |

| Ove Arup & Partners Internation | Page 4                    |   |
|---------------------------------|---------------------------|---|
| The Arup Campus                 | NFC                       |   |
| Blyth Gate                      | Swale 3                   |   |
| Solihull B90 8AE                | 800 Deep                  |   |
| Date 14/01/10                   | Designed By CDH           |   |
| File NFC 30%CC.CAS              | Checked By                |   |
| Micro Drainage                  | Source Control W.11.4 net | · |

## Cascade Storage Controls for storage swale 3 30%.src

## Swale Details

| Infil Coef - Base (m/hr)  | 0.000000 | Length (m)       | 300.0    |
|---------------------------|----------|------------------|----------|
| Infil Coef - Sides (m/hr) | 0.00000  | Side Slope (1:x) | 4.0      |
| Safety Factor             | 2.0      | Invert Level (m) | 110.500  |
| Porosity                  | 1.00     | Cover Level (m)  | 111.300  |
| Base Width (m)            | 0.5      | Slope (1:x)      | 100000.0 |

## Orifice Outflow Control

Diameter (m) 0.200 Discharge Coefficient 0.600 Invert Level (m) 110.500

# Weir / Flum<u>e Overflow Control</u>

Discharge Coef 0.544 Width (m) 6.000 Crest Level (m) 111.150

| al Ltd                    | Page 1                                               |
|---------------------------|------------------------------------------------------|
| NFC                       |                                                      |
| Swale 4                   |                                                      |
| 800 Deep                  |                                                      |
| Designed By CDH           |                                                      |
| Checked By                |                                                      |
| Source Control W.11.4 net |                                                      |
|                           | Swale 4<br>800 Deep<br>Designed By CDH<br>Checked By |

## Cascade Summary of Results for storage swale 4 30%cc.src

| Upstream   | Outflow To | Overflow To |
|------------|------------|-------------|
| Structures | GUCIIOW IG | OVEILIOW IO |

storage swale 3 30%.src storage swale 5 30%cc.src storage swale 5 30%cc.src
storage swale 1 30%cc.src
cellular storage 30%cc.src
car park 1 30%cc.src
car park 2 30%cc.src
storage swale 2 30%cc.src
storage swale 7 30%cc.src

#### Half Drain Time : 279 minutes

| Dura  | orm<br>ation<br>.ns) | Maximum<br>Control<br>(1/s) | Maximum<br>Filtration<br>(l/s) | Maximum<br>Overflow<br>(1/s) | Maximum<br>Outflow<br>(1/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m) | Overflow<br>Volume<br>(m <sup>3</sup> ) | Maximum<br>Volume<br>(m <sup>3</sup> ) | Status     |
|-------|----------------------|-----------------------------|--------------------------------|------------------------------|-----------------------------|----------------------------------|-------------------------|-----------------------------------------|----------------------------------------|------------|
| 15    | Summer               | 34.2                        | 0.0                            | 0.0                          | 34.2                        | 109.6053                         | 0.6053                  | 0.0                                     | 702.9                                  | FLOOD RISK |
| 30    | Summer               | 36.3                        | 0.0                            | 21.8                         | 58.2                        | 109.6738                         | 0.6738                  | 216.7                                   | 856.1                                  | FLOOD RISK |
| 60    | Summer               | 37.8                        | 0.0                            | 118.2                        | 156.1                       | 109.7233                         | 0.7233                  | 614.9                                   | 977.0                                  | FLOOD RISK |
| 120   | Summer               | 38.9                        | 0.0                            | 219.8                        | 258.7                       | 109.7608                         | 0.7608                  | 1030.6                                  | 1072.2                                 | FLOOD RISK |
| 180   | Summer               | 39.1                        | 0.0                            | 241.0                        | 280.1                       | 109.7678                         | 0.7678                  | 1265.2                                  | 1090.8                                 | FLOOD RISK |
| 240   | Summer               | 39.2                        | 0.0                            | 248.7                        | 287.9                       | 109.7703                         | 0.7703                  | 1415.6                                  | 1098.4                                 | FLOOD RISK |
| 360   | Summer               | 39.1                        | 0.0                            | 247.1                        | 286.3                       | 109.7698                         | 0.7698                  | 1584.7                                  | 1097.2                                 | FLOOD RISK |
| 480   | Summer               | 39.0                        | 0.0                            | 236.4                        | 275.4                       | 109.7663                         | 0.7663                  | 1669.8                                  | 1086.7                                 | FLOOD RISK |
| 600   | Summer               | 38.9                        | 0.0                            | 219.8                        | 258.7                       | 109.7608                         | 0.7608                  | 1711.4                                  | 1072.9                                 | FLOOD RISK |
| 720   | Summer               | 38.7                        | 0.0                            | 203.6                        | 242.4                       | 109.7553                         | 0.7553                  | 1730.6                                  | 1058.1                                 | FLOOD RISK |
| 960   | Summer               | 38.4                        | 0.0                            | 175.3                        | 213.8                       | 109.7453                         | 0.7453                  | 1723.2                                  | 1032.2                                 | FLOOD RISK |
| 1440  | Summer               | 38.0                        | 0.0                            | 134.3                        | 172.3                       | 109.7298                         | 0.7298                  | 1594.7                                  | 993.1                                  | FLOOD RISK |
| 2160  | Summer               | 37.5                        | 0.0                            | 93.7                         | 131.3                       | 109.7128                         | 0.7128                  | 1361.0                                  | 950.0                                  | FLOOD RISK |
| 2880  | Summer               | 37.1                        | 0.0                            | 66.2                         | 103.3                       | 109.6998                         | 0.6998                  | 1142.4                                  | 919.0                                  | FLOOD RISK |
| 4320  | Summer               | 36.6                        | 0.0                            | 33.7                         | 70.3                        | 109.6818                         | 0.6818                  | 759.2                                   | 875.4                                  | FLOOD RISK |
| 5760  | Summer               | 36.3                        | 0.0                            | 20.5                         | 56.8                        | 109.6728                         | 0.6728                  | 456.9                                   | 853.4                                  | FLOOD RISK |
| 7200  | Summer               | 36.1                        | 0.0                            | 12.4                         | 48.5                        | 109.6663                         | 0.6663                  | 206.8                                   | 839.0                                  | FLOOD RISK |
| 8640  | Summer               | 35.8                        | 0.0                            | 2.0                          | 37.7                        | 109.6548                         | 0.6548                  | 13.6                                    | 812.6                                  | FLOOD RISK |
| 10080 | Summer               | 33.9                        | 0.0                            | 0.0                          | 33.9                        | 109.5963                         | 0.5963                  | 0.0                                     | 684.3                                  | O K        |
| 15    | Winter               | 35.8                        | 0.0                            | 3.0                          | 38.8                        | 109.6563                         | 0.6563                  | 9.7                                     | 816.1                                  | FLOOD RISK |
| 30    | Winter               | 37.0                        | 0.0                            | 58.4                         | 95.4                        | 109.6958                         | 0.6958                  | 404.9                                   | 908.8                                  | FLOOD RISK |
| 60    | Winter               | 38.7                        | 0.0                            | 195.0                        | 233.7                       | 109.7523                         | 0.7523                  | 858.5                                   | 1051.1                                 | FLOOD RISK |
| 120   | Winter               | 39.7                        | 0.0                            | 304.9                        | 344.6                       | 109.7878                         | 0.7878                  | 1329.6                                  | 1144.3                                 | FLOOD RISK |

| Dura | orm<br>ation<br>.ns)                                                                                                                     | Rain<br>(mm/hr)                                                                                                                                                                                    | Time-Peak<br>(mins)                                                                                                                                         |
|------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer<br>Summer | 124.07<br>81.51<br>51.03<br>30.89<br>22.72<br>18.17<br>13.19<br>10.52<br>8.81<br>7.63<br>6.06<br>4.38<br>3.16<br>2.51<br>1.80<br>1.43<br>1.19<br>1.02<br>0.90<br>124.07<br>81.51<br>51.03<br>30.89 | 289<br>170<br>98<br>122<br>150<br>178<br>240<br>302<br>362<br>424<br>546<br>794<br>1168<br>1552<br>2356<br>3176<br>3976<br>4864<br>5576<br>281<br>94<br>118 |
| 120  |                                                                                                                                          | 00.00                                                                                                                                                                                              | 110                                                                                                                                                         |

| Ove Arup & Partners Interna | Ove Arup & Partners International Ltd |  |  |  |
|-----------------------------|---------------------------------------|--|--|--|
| The Arup Campus             | NFC                                   |  |  |  |
| Blyth Gate                  | Swale 4                               |  |  |  |
| Solihull B90 8AE            | 800 Deep                              |  |  |  |
| Date 14/01/10               | Designed By CDH                       |  |  |  |
| File NFC 30%CC.CAS          | Checked By                            |  |  |  |
| Micro Drainage              | Source Control W.11.4 net             |  |  |  |

# Cascade Summary of Results for storage swale 4 30%cc.src

| Storm<br>Duration<br>(mins) | Maximum<br>Control<br>(1/s) | Maximum<br>Filtration<br>(1/s) | Maximum<br>Overflow<br>(1/s) | Maximum<br>Outflow<br>(1/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m) | Overflow<br>Volume<br>(m <sup>3</sup> ) | Maximum<br>Volume<br>(m³) | Status     |
|-----------------------------|-----------------------------|--------------------------------|------------------------------|-----------------------------|----------------------------------|-------------------------|-----------------------------------------|---------------------------|------------|
| 180 Winter                  | 39.8                        | 0.0                            | 320.0                        | 359.8                       | 109.7923                         | 0.7923                  | 1598.6                                  | 1156.9                    | FLOOD RISK |
| 240 Winter                  | 39.7                        | 0.0                            | 313.3                        | 353.0                       | 109.7903                         | 0.7903                  | 1774.2                                  | 1151.4                    | FLOOD RISK |
| 360 Winter                  | 39.4                        | 0.0                            | 280.4                        | 319.8                       | 109.7803                         | 0.7803                  | 1982.9                                  | 1125.5                    | FLOOD RISK |
| 480 Winter                  | 39.2                        | 0.0                            | 248.7                        | 287.9                       | 109.7703                         | 0.7703                  | 2095.4                                  | 1097.5                    | FLOOD RISK |
| 600 Winter                  | 38.9                        | 0.0                            | 219.8                        | 258.7                       | 109.7608                         | 0.7608                  | 2148.5                                  | 1072.8                    | FLOOD RISK |
| 720 Winter                  | 38.7                        | 0.0                            | 196.4                        | 235.1                       | 109.7528                         | 0.7528                  | 2168.4                                  | 1051.4                    | FLOOD RISK |
| 960 Winter                  | 38.3                        | 0.0                            | 159.0                        | 197.3                       | 109.7393                         | 0.7393                  | 2162.5                                  | 1017.0                    | FLOOD RISK |
| 1440 Winter                 | 37.7                        | 0.0                            | 112.2                        | 150.0                       | 109.7208                         | 0.7208                  | 2017.3                                  | 969.9                     | FLOOD RISK |
| 2160 Winter                 | 37.2                        | 0.0                            | 73.3                         | 110.5                       | 109.7033                         | 0.7033                  | 1679.4                                  | 926.8                     | FLOOD RISK |
| 2880 Winter                 | 36.9                        | 0.0                            | 50.0                         | 86.8                        | 109.6913                         | 0.6913                  | 1357.0                                  | 898.3                     | FLOOD RISK |
| 4320 Winter                 | 36.3                        | 0.0                            | 21.8                         | 58.2                        | 109.6738                         | 0.6738                  | 788.0                                   | 855.9                     | FLOOD RISK |
| 5760 Winter                 | 36.1                        | 0.0                            | 12.4                         | 48.5                        | 109.6663                         | 0.6663                  | 321.0                                   | 838.3                     | FLOOD RISK |
| 7200 Winter                 | 35.5                        | 0.0                            | 0.0                          | 35.5                        | 109.6473                         | 0.6473                  | 0.0                                     | 795.7                     | FLOOD RISK |
| 8640 Winter                 | 32.4                        | 0.0                            | 0.0                          | 32.4                        | 109.5522                         | 0.5522                  | 0.0                                     | 594.7                     | O K        |
| 10080 Winter                | 29.7                        | 0.0                            | 0.0                          | 29.7                        | 109.4757                         | 0.4757                  | 0.0                                     | 453.9                     | O K        |

| Dura  | orm<br>tion<br>.ns) | Rain<br>(mm/hr) | Time-Peak<br>(mins) |
|-------|---------------------|-----------------|---------------------|
| 180   | Winter              | 22.72           | 146                 |
| 240   | Winter              | 18.17           | 178                 |
| 360   | Winter              | 13.19           | 240                 |
| 480   | Winter              | 10.52           | 302                 |
| 600   | Winter              | 8.81            | 362                 |
| 720   | Winter              | 7.63            | 422                 |
| 960   | Winter              | 6.06            | 546                 |
| 1440  | Winter              | 4.38            | 786                 |
| 2160  | Winter              | 3.16            | 1164                |
| 2880  | Winter              | 2.51            | 1560                |
| 4320  | Winter              | 1.80            | 2428                |
| 5760  | Winter              | 1.43            | 3208                |
| 7200  | Winter              | 1.19            | 4288                |
| 8640  | Winter              | 1.02            | 4920                |
| 10080 | Winter              | 0.90            | 5592                |

| Ove Arup & Partners Internationa | al Ltd                    | Page 3 |
|----------------------------------|---------------------------|--------|
| The Arup Campus                  | NFC                       |        |
| Blyth Gate                       | Swale 4                   |        |
| Solihull B90 8AE                 | 800 Deep                  |        |
| Date 14/01/10                    | Designed By CDH           |        |
| File NFC 30%CC.CAS               | Checked By                |        |
| Micro Drainage                   | Source Control W.11.4 net |        |

# Cascade Rainfall Details for storage swale 4 30%cc.src

| Region                | ENG+WAL | Cv (Summer)           | 0.750 | Summer Storms    | Yes |
|-----------------------|---------|-----------------------|-------|------------------|-----|
| Return Period (years) | 100     | Cv (Winter)           | 0.840 | Winter Storms    | Yes |
| M5-60 (mm)            | 19.400  | Shortest Storm (mins) | 15    | Climate Change % | +30 |
| Ratio-R               | 0.400   | Longest Storm (mins)  | 10080 |                  |     |

# Time / Area Diagram

Total Area (ha) = 0.000

| Time  | (mins) | Area |
|-------|--------|------|
| from: | to:    | (ha) |

0 4 0.000

| l Ltd                     | Page 4                                               |
|---------------------------|------------------------------------------------------|
| NFC                       |                                                      |
| Swale 4                   |                                                      |
| 800 Deep                  |                                                      |
| Designed By CDH           |                                                      |
| Checked By                |                                                      |
| Source Control W.11.4 net | ·                                                    |
|                           | Swale 4<br>800 Deep<br>Designed By CDH<br>Checked By |

## Cascade Storage Controls for storage swale 4 30%cc.src

## Swale Details

| Infil Coef - Base (m/hr)  | 0.000000 | Length (m)       | 400.0    |
|---------------------------|----------|------------------|----------|
| Infil Coef - Sides (m/hr) | 0.00000  | Side Slope (1:x) | 4.0      |
| Safety Factor             | 2.0      | Invert Level (m) | 109.000  |
| Porosity                  | 1.00     | Cover Level (m)  | 109.800  |
| Base Width (m)            | 0.5      | Slope (1:x)      | 100000.0 |

## Orifice Outflow Control

Diameter (m) 0.150 Discharge Coefficient 0.600 Invert Level (m) 109.000

# Weir / Flum<u>e Overflow Control</u>

Discharge Coef 0.544 Width (m) 3.500 Crest Level (m) 109.650

| l Ltd                     | Page 1                                               |
|---------------------------|------------------------------------------------------|
| NFC                       |                                                      |
| Swale 5                   |                                                      |
| 800 Deep                  |                                                      |
| Designed By CDH           |                                                      |
| Checked By                |                                                      |
| Source Control W.11.4 net |                                                      |
|                           | Swale 5<br>800 Deep<br>Designed By CDH<br>Checked By |

## Cascade Summary of Results for storage swale 5 30%cc.src

| Upstream   |  |
|------------|--|
| Structures |  |

Outflow To

Overflow To

storage swale 4 30%cc.src storage swale 6 30%cc.src storage swale 6 30%cc.src

car park 3 30%cc.src storage swale 1 30%cc.src cellular storage 30%cc.src car park 1 30%cc.src car park 2 30%cc.src storage swale 2 30%cc.src storage swale 7 30%cc.src

#### Half Drain Time : 579 minutes

| Dura  | orm<br>Ition<br>.ns) | Maximum<br>Control<br>(l/s) | Maximum<br>Filtration<br>(l/s) | Maximum<br>Overflow<br>(l/s) | Maximum<br>Outflow<br>(l/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m) | Overflow<br>Volume<br>(m <sup>3</sup> ) | Maximum<br>Volume<br>(m³) | Status     |
|-------|----------------------|-----------------------------|--------------------------------|------------------------------|-----------------------------|----------------------------------|-------------------------|-----------------------------------------|---------------------------|------------|
| 15    | Summer               | 15.7                        | 0.0                            | 0.0                          | 15.7                        | 108.1178                         | 0.6178                  | 0.0                                     | 697.6                     | FLOOD RISK |
| 30    | Summer               | 16.5                        | 0.0                            | 13.3                         | 29.8                        | 108.1748                         | 0.6748                  | 225.1                                   | 820.3                     | FLOOD RISK |
| 60    | Summer               | 16.7                        | 0.0                            | 30.1                         | 46.9                        | 108.1928                         | 0.6928                  | 618.7                                   | 860.9                     | FLOOD RISK |
| 120   | Summer               | 17.0                        | 0.0                            | 52.3                         | 69.3                        | 108.2118                         | 0.7118                  | 1063.0                                  | 905.9                     | FLOOD RISK |
| 180   | Summer               | 17.3                        | 0.0                            | 93.2                         | 110.5                       | 108.2408                         | 0.7408                  | 1329.3                                  | 974.6                     | FLOOD RISK |
| 240   | Summer               | 17.5                        | 0.0                            | 113.1                        | 130.6                       | 108.2533                         | 0.7533                  | 1512.0                                  | 1005.9                    | FLOOD RISK |
| 360   | Summer               | 17.6                        | 0.0                            | 122.2                        | 139.8                       | 108.2588                         | 0.7588                  | 1752.9                                  | 1019.9                    | FLOOD RISK |
| 480   | Summer               | 17.6                        | 0.0                            | 129.9                        | 147.5                       | 108.2633                         | 0.7633                  | 1917.1                                  | 1031.3                    | FLOOD RISK |
| 600   | Summer               | 17.7                        | 0.0                            | 134.2                        | 151.9                       | 108.2658                         | 0.7658                  | 2035.6                                  | 1037.6                    | FLOOD RISK |
| 720   | Summer               | 17.7                        | 0.0                            | 136.0                        | 153.6                       | 108.2668                         | 0.7668                  | 2126.5                                  | 1039.6                    | FLOOD RISK |
| 960   | Summer               | 17.6                        | 0.0                            | 131.6                        | 149.2                       | 108.2643                         | 0.7643                  | 2251.9                                  | 1033.9                    | FLOOD RISK |
| 1440  | Summer               | 17.5                        | 0.0                            | 113.9                        | 131.4                       | 108.2538                         | 0.7538                  | 2362.2                                  | 1007.7                    | FLOOD RISK |
| 2160  | Summer               | 17.3                        | 0.0                            | 89.3                         | 106.7                       | 108.2383                         | 0.7383                  | 2377.2                                  | 969.4                     | FLOOD RISK |
| 2880  | Summer               | 17.2                        | 0.0                            | 71.8                         | 88.9                        | 108.2263                         | 0.7263                  | 2300.7                                  | 939.6                     | FLOOD RISK |
| 4320  | Summer               | 16.9                        | 0.0                            | 48.5                         | 65.5                        | 108.2088                         | 0.7088                  | 2041.4                                  | 898.3                     | FLOOD RISK |
| 5760  | Summer               | 16.8                        | 0.0                            | 39.0                         | 55.8                        | 108.2008                         | 0.7008                  | 1808.3                                  | 879.7                     | FLOOD RISK |
| 7200  | Summer               | 16.7                        | 0.0                            | 31.2                         | 47.9                        | 108.1938                         | 0.6938                  | 1596.0                                  | 863.1                     | FLOOD RISK |
| 8640  | Summer               | 16.6                        | 0.0                            | 20.7                         | 37.3                        | 108.1833                         | 0.6833                  | 1399.2                                  | 839.7                     | FLOOD RISK |
| 10080 | Summer               | 16.6                        | 0.0                            | 17.5                         | 34.1                        | 108.1798                         | 0.6798                  | 1231.9                                  | 831.0                     | FLOOD RISK |
| 15    | Winter               | 16.3                        | 0.0                            | 2.8                          | 19.1                        | 108.1588                         | 0.6588                  | 17.7                                    | 784.5                     | FLOOD RISK |
| 30    | Winter               | 16.6                        | 0.0                            | 17.9                         | 34.5                        | 108.1803                         | 0.6803                  | 407.3                                   | 832.2                     | FLOOD RISK |
| 60    | Winter               | 16.9                        | 0.0                            | 40.1                         | 57.0                        | 108.2018                         | 0.7018                  | 870.2                                   | 882.0                     | FLOOD RISK |
| 120   | Winter               | 17.4                        | 0.0                            | 97.8                         | 115.2                       | 108.2438                         | 0.7438                  | 1379.3                                  | 982.9                     | FLOOD RISK |

| Dura  | orm<br>Ition<br>Ins) | Rain<br>(mm/hr) | Time-Peak<br>(mins) |
|-------|----------------------|-----------------|---------------------|
| 15    |                      | 124.07          | 743                 |
| 30    |                      | 81.51           | 571                 |
| 60    |                      | 51.03           | 326                 |
| 120   | Summer               | 30.89           | 218                 |
| 180   | Summer               | 22.72           | 222                 |
| 240   |                      | 18.17           | 256                 |
|       | Summer               | 13.19           | 310                 |
| 480   |                      | 10.52           | 368                 |
| 600   |                      | 8.81            | 428                 |
|       | Summer               | 7.63            | 490                 |
| 960   | Summer               | 6.06            | 614                 |
| 1440  |                      | 4.38            | 864                 |
| 2160  | Summer               | 3.16            | 1244                |
| 2880  | Summer               | 2.51            | 1628                |
| 4320  |                      | 1.80            | 2416                |
| 5760  |                      | 1.43            | 3240                |
| 7200  |                      | 1.19            | 4016                |
| 8640  |                      | 1.02            | 4904                |
| 10080 |                      | 0.90            | 5680                |
| 15    | Winter               | 124.07          | 765                 |
|       | Winter               | 81.51           | 429                 |
|       | Winter               | 51.03           | 256                 |
| 120   | Winter               | 30.89           | 178                 |

| Ove Arup & Partners Internation | al Ltd                    | Page 2 |
|---------------------------------|---------------------------|--------|
| The Arup Campus                 | NFC                       |        |
| Blyth Gate                      | Swale 5                   |        |
| Solihull B90 8AE                | 800 Deep                  |        |
| Date 14/01/10                   | Designed By CDH           |        |
| File NFC 30%CC.CAS              | Checked By                |        |
| Micro Drainage                  | Source Control W.11.4 net |        |

# Cascade Summary of Results for storage swale 5 30%cc.src

| Storm<br>Duration<br>(mins) | Maximum<br>Control<br>(l/s) | Maximum<br>Filtration<br>(l/s) | Maximum<br>Overflow<br>(1/s) | Maximum<br>Outflow<br>(l/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m) | Overflow<br>Volume<br>(m <sup>3</sup> ) | Maximum<br>Volume<br>(m³) | Status     |
|-----------------------------|-----------------------------|--------------------------------|------------------------------|-----------------------------|----------------------------------|-------------------------|-----------------------------------------|---------------------------|------------|
| 180 Winter                  | 17.8                        | 0.0                            | 149.3                        | 167.0                       | 108.2743                         | 0.7743                  | 1682.9                                  | 1058.6                    | FLOOD RISK |
| 240 Winter                  | 17.9                        | 0.0                            | 164.8                        | 182.7                       | 108.2828                         | 0.7828                  | 1891.9                                  | 1080.8                    | FLOOD RISK |
| 360 Winter                  | 18.0                        | 0.0                            | 178.0                        | 196.0                       | 108.2898                         | 0.7898                  | 2172.4                                  | 1099.3                    | FLOOD RISK |
| 480 Winter                  | 18.0                        | 0.0                            | 180.9                        | 198.9                       | 108.2913                         | 0.7913                  | 2365.7                                  | 1103.0                    | FLOOD RISK |
| 600 Winter                  | 17.9                        | 0.0                            | 176.1                        | 194.1                       | 108.2888                         | 0.7888                  | 2503.3                                  | 1096.7                    | FLOOD RISK |
| 720 Winter                  | 17.9                        | 0.0                            | 168.6                        | 186.5                       | 108.2848                         | 0.7848                  | 2606.5                                  | 1086.1                    | FLOOD RISK |
| 960 Winter                  | 17.8                        | 0.0                            | 150.2                        | 167.9                       | 108.2748                         | 0.7748                  | 2753.1                                  | 1060.7                    | FLOOD RISK |
| 1440 Winter                 | 17.5                        | 0.0                            | 118.0                        | 135.6                       | 108.2563                         | 0.7563                  | 2891.4                                  | 1014.1                    | FLOOD RISK |
| 2160 Winter                 | 17.3                        | 0.0                            | 86.3                         | 103.6                       | 108.2363                         | 0.7363                  | 2909.8                                  | 964.8                     | FLOOD RISK |
| 2880 Winter                 | 17.1                        | 0.0                            | 66.9                         | 84.0                        | 108.2228                         | 0.7228                  | 2835.0                                  | 931.1                     | FLOOD RISK |
| 4320 Winter                 | 16.9                        | 0.0                            | 41.3                         | 58.2                        | 108.2028                         | 0.7028                  | 2520.1                                  | 883.9                     | FLOOD RISK |
| 5760 Winter                 | 16.7                        | 0.0                            | 31.2                         | 47.9                        | 108.1938                         | 0.6938                  | 2185.4                                  | 863.1                     | FLOOD RISK |
| 7200 Winter                 | 16.6                        | 0.0                            | 18.8                         | 35.4                        | 108.1813                         | 0.6813                  | 1875.5                                  | 835.4                     | FLOOD RISK |
| 8640 Winter                 | 16.5                        | 0.0                            | 16.2                         | 32.7                        | 108.1783                         | 0.6783                  | 1595.1                                  | 827.6                     | FLOOD RISK |
| 10080 Winter                | 16.5                        | 0.0                            | 13.3                         | 29.8                        | 108.1748                         | 0.6748                  | 1313.0                                  | 819.8                     | FLOOD RISK |

| Dura  | Storm<br>Duration<br>(mins) |       | Time-Peak<br>(mins) |
|-------|-----------------------------|-------|---------------------|
| 180   | Winter                      | 22.72 | 204                 |
| 240   | Winter                      | 18.17 | 238                 |
| 360   | Winter                      | 13.19 | 296                 |
| 480   | Winter                      | 10.52 | 360                 |
| 600   | Winter                      | 8.81  | 424                 |
| 720   | Winter                      | 7.63  | 488                 |
| 960   | Winter                      | 6.06  | 612                 |
| 1440  | Winter                      | 4.38  | 862                 |
| 2160  | Winter                      | 3.16  | 1240                |
| 2880  | Winter                      | 2.51  | 1620                |
| 4320  | Winter                      | 1.80  | 2460                |
| 5760  | Winter                      | 1.43  | 3248                |
| 7200  | Winter                      | 1.19  | 4384                |
| 8640  | Winter                      | 1.02  | 5040                |
| 10080 | Winter                      | 0.90  | 5624                |

| Ove Arup & Partners Internation | al Ltd                    | Page 3 |
|---------------------------------|---------------------------|--------|
| The Arup Campus                 | NFC                       |        |
| Blyth Gate                      | Swale 5                   |        |
| Solihull B90 8AE                | 800 Deep                  |        |
| Date 14/01/10                   | Designed By CDH           |        |
| File NFC 30%CC.CAS              | Checked By                |        |
| Micro Drainage                  | Source Control W.11.4 net |        |

# Cascade Rainfall Details for storage swale 5 30%cc.src

| Region                | ENG+WAL | Cv (Summer)           | 0.750 | Summer Storms    | Yes |
|-----------------------|---------|-----------------------|-------|------------------|-----|
| Return Period (years) | 100     | Cv (Winter)           | 0.840 | Winter Storms    | Yes |
| M5-60 (mm)            | 19.400  | Shortest Storm (mins) | 15    | Climate Change % | +30 |
| Ratio-R               | 0.400   | Longest Storm (mins)  | 10080 |                  |     |

# Time / Area Diagram

Total Area (ha) = 0.000

| Time  | (mins) | Area |
|-------|--------|------|
| from: | to:    | (ha) |

0 4 0.000

| Ove Arup & Partners Internation | al Ltd                    | Page 4 |
|---------------------------------|---------------------------|--------|
| The Arup Campus                 | NFC                       |        |
| Blyth Gate                      | Swale 5                   |        |
| Solihull B90 8AE                | 800 Deep                  |        |
| Date 14/01/10                   | Designed By CDH           |        |
| File NFC 30%CC.CAS              | Checked By                |        |
| Micro Drainage                  | Source Control W.11.4 net |        |

## Cascade Storage Controls for storage swale 5 30%cc.src

## Swale Details

| Infil Coef - Base (m/hr)  | 0.000000 | Length (m)       | 382.0    |
|---------------------------|----------|------------------|----------|
| Infil Coef - Sides (m/hr) | 0.000000 | Side Slope (1:x) | 4.0      |
| Safety Factor             | 2.0      | Invert Level (m) | 107.500  |
| Porosity                  | 1.00     | Cover Level (m)  | 108.300  |
| Base Width (m)            | 0.5      | Slope (1:x)      | 100000.0 |

## Orifice Outflow Control

Diameter (m) 0.100 Discharge Coefficient 0.600 Invert Level (m) 107.500

# Weir / Flum<u>e Overflow Control</u>

Discharge Coef 0.544 Width (m) 2.000 Crest Level (m) 108.150

| Ove Arup & Partners Internation | al Ltd                    | Page 1 |
|---------------------------------|---------------------------|--------|
| The Arup Campus                 | NFC                       |        |
| Blyth Gate                      | Swale 6                   |        |
| Solihull B90 8AE                | 800 Deep                  |        |
| Date 14/01/10                   | Designed By CDH           |        |
| File NFC 30%CC.CAS              | Checked By                |        |
| Micro Drainage                  | Source Control W.11.4 net |        |

# Cascade Summary of Results for storage swale 6 30%cc.src

| Upstream<br>Structures                                                                                                                                                                                                                             | Outflow To | Overflow To |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|
| storage swale 5 30%cc.src<br>storage swale 4 30%cc.src<br>car park 3 30%cc.src<br>storage swale 1 30%cc.src<br>storage swale 1 30%cc.src<br>car park 1 30%cc.src<br>car park 2 30%cc.src<br>storage swale 2 30%cc.src<br>storage swale 7 30%cc.src | (None)     | (None)      |

# Half Drain Time : 80 minutes

| Dura  | orm<br>ntion<br>.ns) | Maximum<br>Control<br>(l/s) | Maximum<br>Filtration<br>(l/s) | Maximum<br>Outflow<br>(l/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m) | Maximum<br>Volume<br>(m³) | Status     |
|-------|----------------------|-----------------------------|--------------------------------|-----------------------------|----------------------------------|-------------------------|---------------------------|------------|
| 15    |                      | 15.7                        | 0.0                            | 15.7                        | 106.1497                         | 0.1498                  | 56.7                      | ΟK         |
| 30    |                      | 28.6                        | 0.0                            | 28.6                        | 106.2213                         | 0.2212                  | 99.3                      | 0 K        |
| 60    | Summer               | 41.5                        | 0.0                            | 41.5                        | 106.2813                         | 0.2812                  | 142.3                     | 0 K        |
| 120   | Summer               | 56.3                        | 0.0                            | 56.3                        | 106.3632                         | 0.3632                  | 212.6                     | O K        |
|       | Summer               | 66.0                        | 0.0                            | 66.0                        | 106.4552                         | 0.4552                  | 307.0                     | O K        |
| 240   | Summer               | 72.8                        | 0.0                            | 72.8                        | 106.5287                         | 0.5287                  | 393.9                     | 0 K        |
| 360   | Summer               | 78.4                        | 0.0                            | 78.4                        | 106.5957                         | 0.5958                  | 481.8                     | O K        |
| 480   | Summer               | 80.1                        | 0.0                            | 80.1                        | 106.6163                         | 0.6163                  | 511.0                     | FLOOD RISK |
| 600   | Summer               | 81.1                        | 0.0                            | 81.1                        | 106.6283                         | 0.6283                  | 528.0                     | FLOOD RISK |
| 720   | Summer               | 81.7                        | 0.0                            | 81.7                        | 106.6358                         | 0.6358                  | 538.5                     | FLOOD RISK |
| 960   | Summer               | 81.9                        | 0.0                            | 81.9                        | 106.6388                         | 0.6388                  | 543.2                     | FLOOD RISK |
| 1440  | Summer               | 79.8                        | 0.0                            | 79.8                        | 106.6128                         | 0.6128                  | 505.8                     | FLOOD RISK |
| 2160  | Summer               | 74.2                        | 0.0                            | 74.2                        | 106.5457                         | 0.5457                  | 415.4                     | O K        |
| 2880  | Summer               | 68.1                        | 0.0                            | 68.1                        | 106.4777                         | 0.4777                  | 332.2                     | O K        |
| 4320  | Summer               | 59.2                        | 0.0                            | 59.2                        | 106.3892                         | 0.3892                  | 237.7                     | O K        |
| 5760  | Summer               | 53.6                        | 0.0                            | 53.6                        | 106.3402                         | 0.3402                  | 192.0                     | ΟK         |
| 7200  | Summer               | 46.4                        | 0.0                            | 46.4                        | 106.3037                         | 0.3037                  | 160.6                     | ΟK         |
| 8640  | Summer               | 36.9                        | 0.0                            | 36.9                        | 106.2603                         | 0.2603                  | 126.7                     | ΟK         |
| 10080 | Summer               | 33.8                        | 0.0                            | 33.8                        | 106.2458                         | 0.2458                  | 116.2                     | ОК         |
| 15    | Winter               | 18.2                        | 0.0                            | 18.2                        | 106.1663                         | 0.1663                  | 65.9                      | ОК         |
|       | Winter               | 33.1                        | 0.0                            | 33.1                        | 106.2428                         | 0.2427                  | 113.8                     | 0 K        |
| 60    | Winter               | 51.1                        | 0.0                            | 51.1                        | 106.3252                         | 0.3252                  | 178.7                     | 0 K        |

| Dura       | Storm<br>Duration<br>(mins) |                | Time-Peak<br>(mins) |
|------------|-----------------------------|----------------|---------------------|
| 15         |                             | 124.07         | 781                 |
| 30         |                             | 81.51          | 644                 |
| 60         |                             | 51.03          | 386                 |
| 120<br>180 |                             | 30.89<br>22.72 | 336                 |
| 240        |                             | 18.17          | 320<br>346          |
| 360        |                             | 13.19          | 420                 |
| 480        |                             | 10.52          | 420                 |
| 400<br>600 |                             | 8.81           | 540                 |
| 720        |                             | 7.63           | 600                 |
| 960        | Summer                      | 6.06           | 726                 |
| 1440       |                             | 4.38           | 986                 |
| 2160       |                             | 3.16           | 1372                |
| 2880       | Summer                      | 2.51           | 1764                |
| 4320       |                             | 1.80           | 2616                |
| 5760       |                             | 1.43           | 3352                |
| 7200       |                             | 1.19           | 4104                |
| 8640       | Summer                      | 1.02           | 4944                |
| 10080      | Summer                      | 0.90           | 5664                |
| 15         | Winter                      | 124.07         | 808                 |
| 30         | Winter                      | 81.51          | 522                 |
| 60         | Winter                      | 51.03          | 338                 |

| Ove Arup & Partners Internationa | l Ltd                     | Page 2  |
|----------------------------------|---------------------------|---------|
| The Arup Campus                  | NFC                       |         |
| Blyth Gate                       | Swale 6                   |         |
| Solihull B90 8AE                 | 800 Deep                  |         |
| Date 14/01/10                    | Designed By CDH           | DENTERE |
| File NFC 30%CC.CAS               | Checked By                |         |
| Micro Drainage                   | Source Control W.11.4 net |         |

# Cascade Summary of Results for storage swale 6 30%cc.src

| Storm<br>Duration<br>(mins) | Maximum<br>Control<br>(1/s) | Maximum<br>Filtration<br>(l/s) | Maximum<br>Outflow<br>(1/s) | Maximum<br>Water Level<br>(m OD) | Maximum<br>Depth<br>(m) | Maximum<br>Volume<br>(m <sup>3</sup> ) | Status     |
|-----------------------------|-----------------------------|--------------------------------|-----------------------------|----------------------------------|-------------------------|----------------------------------------|------------|
| 120 Winter                  | 66.8                        | 0.0                            | 66.8                        | 106.4637                         | 0.4637                  | 316.1                                  | O K        |
| 180 Winter                  | 78.2                        | 0.0                            | 78.2                        | 106.5933                         | 0.5933                  | 478.5                                  | O K        |
| 240 Winter                  | 84.8                        | 0.0                            | 84.8                        | 106.6763                         | 0.6763                  | 599.1                                  | FLOOD RISK |
| 360 Winter                  | 90.7                        | 0.0                            | 90.7                        | 106.7568                         | 0.7568                  | 729.2                                  | FLOOD RISK |
| 480 Winter                  | 92.5                        | 0.0                            | 92.5                        | 106.7823                         | 0.7823                  | 773.3                                  | FLOOD RISK |
| 600 Winter                  | 93.1                        | 0.0                            | 93.1                        | 106.7918                         | 0.7918                  | 789.8                                  | FLOOD RISK |
| 720 Winter                  | 93.3                        | 0.0                            | 93.3                        | 106.7948                         | 0.7948                  | 795.4                                  | FLOOD RISK |
| 960 Winter                  | 92.4                        | 0.0                            | 92.4                        | 106.7808                         | 0.7808                  | 770.6                                  | FLOOD RISK |
| 1440 Winter                 | 87.7                        | 0.0                            | 87.7                        | 106.7153                         | 0.7153                  | 660.8                                  | FLOOD RISK |
| 2160 Winter                 | 78.8                        | 0.0                            | 78.8                        | 106.5998                         | 0.5998                  | 487.6                                  | O K        |
| 2880 Winter                 | 70.3                        | 0.0                            | 70.3                        | 106.5012                         | 0.5012                  | 359.8                                  | 0 K        |
| 4320 Winter                 | 56.5                        | 0.0                            | 56.5                        | 106.3652                         | 0.3652                  | 214.8                                  | 0 K        |
| 5760 Winter                 | 47.1                        | 0.0                            | 47.1                        | 106.3073                         | 0.3072                  | 163.6                                  | O K        |
| 7200 Winter                 | 35.4                        | 0.0                            | 35.4                        | 106.2533                         | 0.2532                  | 121.4                                  | 0 K        |
| 8640 Winter                 | 32.4                        | 0.0                            | 32.4                        | 106.2393                         | 0.2393                  | 111.5                                  | O K        |
| 10080 Winter                | 29.7                        | 0.0                            | 29.7                        | 106.2268                         | 0.2268                  | 103.1                                  | O K        |

| Storm<br>Duration<br>(mins)                                                                                                  | Rain<br>(mm/hr)                                                           | Time-Peak<br>(mins)                                                  |
|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------|
| 120 Winter<br>180 Winter<br>240 Winter<br>360 Winter<br>480 Winter<br>600 Winter<br>960 Winter<br>1440 Winter<br>2160 Winter | 30.89<br>22.72<br>18.17<br>13.19<br>10.52<br>8.81<br>7.63<br>6.06<br>4.38 | 276<br>292<br>328<br>412<br>488<br>548<br>614<br>752<br>1022<br>1412 |
| 2160 Winter<br>2880 Winter<br>4320 Winter<br>5760 Winter<br>7200 Winter<br>8640 Winter<br>10080 Winter                       | 3.16<br>2.51<br>1.80<br>1.43<br>1.19<br>1.02<br>0.90                      | 1412<br>1792<br>2640<br>3376<br>4488<br>5008<br>5664                 |

| Ove Arup & Partners Internationa | l Ltd                     | Page 3     |
|----------------------------------|---------------------------|------------|
| The Arup Campus                  | NFC                       |            |
| Blyth Gate                       | Swale 6                   |            |
| Solihull B90 8AE                 | 800 Deep                  |            |
| Date 14/01/10                    | Designed By CDH           | Dentración |
| File NFC 30%CC.CAS               | Checked By                |            |
| Micro Drainage                   | Source Control W.11.4 net |            |

# Cascade Rainfall Details for storage swale 6 30%cc.src

| Region                | ENG+WAL | Cv (Summer)           | 0.750 | Summer Storms    | Yes |
|-----------------------|---------|-----------------------|-------|------------------|-----|
| Return Period (years) | 100     | Cv (Winter)           | 0.840 | Winter Storms    | Yes |
| M5-60 (mm)            | 19.400  | Shortest Storm (mins) | 15    | Climate Change % | +30 |
| Ratio-R               | 0.400   | Longest Storm (mins)  | 10080 |                  |     |

# Time / Area Diagram

Total Area (ha) = 0.000

| Time  | (mins) | Area |
|-------|--------|------|
| from: | to:    | (ha) |

0 4 0.000

| l Ltd                     | Page 4                                               |
|---------------------------|------------------------------------------------------|
| NFC                       |                                                      |
| Swale 6                   |                                                      |
| 800 Deep                  |                                                      |
| Designed By CDH           |                                                      |
| Checked By                |                                                      |
| Source Control W.11.4 net | ·                                                    |
|                           | Swale 6<br>800 Deep<br>Designed By CDH<br>Checked By |

# Cascade Storage Controls for storage swale 6 30%cc.src

## Swale Details

| Infil Coef - Base (m/hr)  | 0.000000 | Length (m)       | 240.0    |
|---------------------------|----------|------------------|----------|
| Infil Coef - Sides (m/hr) | 0.00000  | Side Slope (1:x) | 4.0      |
| Safety Factor             | 2.0      | Invert Level (m) | 106.000  |
| Porosity                  | 1.00     | Cover Level (m)  | 106.800  |
| Base Width (m)            | 1.0      | Slope (1:x)      | 100000.0 |

# Orifice Outflow Control

Diameter (m) 0.233 Discharge Coefficient 0.600 Invert Level (m) 106.000

Appendix D Environment Agency Consultation

# ARUP

Page 1 of 1

| Project title Project | t F                | Job number            |
|-----------------------|--------------------|-----------------------|
|                       |                    | 209289                |
| Communication from    | Chris Heath        | File reference        |
| Organisation          | Arup               | 40                    |
| Telephone no          |                    |                       |
| Communication to      | Karen Yates        | Date of communication |
| Organisation          | Environment Agency | 11 January 2010       |
| Telephone no          | 01543 404989       |                       |
| Copy to               |                    |                       |

| Record of communication                                                                                                                                                                                                                                                                                                                                                           | Action |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| CDH spoke to Karen Yates at the EA regarding our proposals and to get further clarification regarding their consultation response.                                                                                                                                                                                                                                                |        |
| Karen confirmed that there are a couple of issues that we need to address in our drainage strategy and the FRA:                                                                                                                                                                                                                                                                   |        |
| <ul> <li>30% increase in rainfall intensity to allow for climate change (we would normally allow 20% in accordance with Table B.2 of PPS25, but in the Midlands the EA are requesting 30% for any residential - this includes hotels and schools - development, regardless of design life);</li> <li>Justification on to use use use not incomparating group reacting.</li> </ul> |        |
| <ul> <li>Justification as to why we're not incorporating green roofs;</li> <li>Flood routing of overland flows to ensure that the buildings are not at risk of flooding during intense rainfall; and</li> </ul>                                                                                                                                                                   |        |
| • Confirmation that the buildings are with Flood Zone 1.                                                                                                                                                                                                                                                                                                                          |        |
| Other than that, she confirmed that she is happy with our proposals.                                                                                                                                                                                                                                                                                                              |        |
| CDH discussed the method for calculating greenfield runoff of KY. KY agreed that the most appropriate method should be used, and that if it was more appropriate to use ADAS as this allows for a sloping catchment then this would be acceptable.                                                                                                                                |        |
|                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                                                                                                                                                                                                                                                                                                                                                                                   |        |

Mr Chris Heath ARUP Central Square Forth Street Newcastle upon Tyne Tyne and Wear NE1 3PL Our ref:UT/2009/107326/02-L01Your ref:F. A. Project

**Date:** 11 January 2010

FAO Mr Heath

Dear Sir,

# PRE-DEVELOPMENT ENQUIRY CONCERNING FORTHCOMING PLANNING APPLICATION CURRENTLY BEING PREPARED BY AEECOM

# **BYRKLEY PARK, BURTON-UPON-TRENT**

Thank you for the Preliminary Foul and Surface Water Strategy emailed to us on 22 December 2009. We have the following comments to make:

# **Flood Risk**

We acknowledge that a Flood Risk Assessment is currently being prepared by Aecom.

Our records show that the majority of the site lies within Flood Zone 1, which is defined by Planning Policy Statement 25: Development and Flood Risk (PPS25), as having a low probability of flooding. However, the Lin Brook runs along the boundary of the site therefore part of the site lies within Flood Zone 3. Flood Zone 3 is defined by PPS25 as having a high probability of flooding.

Under the terms of PPS25, this Flood Risk Assessment should addresses flood risk to the site which would include flood risk from the Lin Brook and how surface water run-off from this development will be managed.

We would comment that we would have no objections in principle to the development, however, this is subject to a satisfactory Flood Risk Assessment being produced.

PPS25 advocates that "In areas at risk of river flooding, preference should be given to locating new development in Flood Zone 1". The Flood Risk Assessment will need to demonstrate that the development, particularly the buildings, will be safe from flooding from the Lin Brook, therefore, the exact flood plain extent of this watercourse would need to be determined.

As a minimum the Environment Agency requires that any surface water scheme

meets the following criteria:-

1. Any outflow from the site must be limited to the maximum allowable rate, i.e. greenfield equivalent (5 l/s/ha average).

2. Sustainable Drainage Systems (SuDS) should be considered as the first method of surface water disposal for the site, provided that ground conditions are appropriate. Surface water run-off should be controlled as near to its source as possible through a sustainable drainage approach to surface water management. This approach involves using a range of techniques including soakaways, infiltration trenches, permeable pavements, grassed swales, ponds and wetlands to reduce flood risk by attenuating the rate and quantity of surface water run-off from a site. This approach can also offer other benefits in terms of promoting groundwater recharge, water quality improvement and amenity enhancements. Approved Document Part H of the Building Regulations 2000 sets out a hierarchy for surface water disposal which encourages a SUDS approach.

Whilst we have no objection to a connection being made to the Lin Brook, C697 (Table 5.6 page 5-8) specifies how many treatment train elements should be included in a development. We would therefore require at least two treatment train elements are incorporated into the development before the surface water discharges to this watercourse. Surface water design should follow the latest industry guidance CIRIA C697 SUDS Manual.

We have reviewed the proposed surface water drainage strategy with regard to the SuDS on the site and we consider this approach to still be relevant. We welcome the creation of a wetland area, use of rainwater harvesting, swales and permeable paving being proposed within this strategy. However, we are extremely disappointed that Green Roofs have not been considered as part of this development as green roofs may offer some additional attenuation and benefits, listed below.

The Environment Agency and LPA's in the area are actively encouraging development techniques that will improve various aspects of the local environment. The Environment Agency is therefore asking for Green Roofs as a first choice for larger developments in this area. An independent study, (carried out by the Livingroofs Organisation and Ecology Consultancy Ltd.), states that the use of green roofs can give significant improvements to:

1) Energy conservation, by providing improved heat insulation and thereby reducing overall production of Carbon Dioxide,

- 2) Air quality, by removing airborne particles and compounds,
- 3) Ozone level, by reducing the "Heat Island" effect,

4) Noise pollution, by offering improved sound insulation to buildings,

5) Natural habitat creation, to offset the loss of natural habitats for Black Redstarts, bats and other species,

6) Water quality, greenery and plant-life provides natural biological water treatment for rainwater and helps improve oxygen levels in surface water (poor Oxygen levels are a particular problem in urban areas),

7) Future flooding pressures, green roofs attenuate the rainfall that falls upon them by storing the water and releasing it a controlled rate. Normal roofs shed water almost immediately into local systems, which increases the pressure on the capacity of public sewers and the river systems that they discharge to. In the future, it is predicted that rainfall will become more intense at times and so there is a need to relieve the pressures on existing surface water systems. The Agency would take

Cont/d..

green roofs into account, when considering the amount of attenuation storage that must be provided for a site. Overall, the provision of green roof area is likely to be significantly cheaper than providing below ground attenuation storage on a site.
8) Provision of green space amenity, (if accessible), which is shown to have beneficial effects on people's health.

9) Recycling, careful planning of the roof construction will allow the re-use of demolition waste as growing media for a green roof.

Bearing in mind the significant and varied benefits listed above, we would ask developer to use green roofs as part of this scheme. If you do not intend to use green roofs, you must demonstrate how you will achieve the same or better benefits for the development, through an alternative proposal. Details of green roofing techniques, consultants and suppliers are available through the Livingroofs website, www.livingroofs.org

3. We acknowledge that some MicroDrainage Calculations have been submitted, however, the system must deal with the surface water run-off from the site up to the critical 1 in a 100-year return period storm event, plus an additional 30% to account for climate change. Drainage calculations must be included to demonstrate this (e.g. MicroDrainage or similar package calculations which include the necessary attenuation volume).

An assessment of the proposed drainage system should show that no above ground flooding occurs in a 30 year event, and that if flooding occurs in the 100 year event (plus climate change) that it remains on site and safe. If above ground flooding does occur in the 100 year event (plus climate change) it should be demonstrated that it remains on site & safe via plans, calculations (e.g. Microdrainage), manhole schedules and text. This information should show flow routes, locations of ponding, depths of ponding and durations of ponding. Evidence should also be submitted to show the determination of the critical storm duration.

Should you wish to discuss these comments concerning flood risk further, please contact the Drainage Engineer, Karen Yates, Tel. 01543 404989.

# **Foul Drainage**

The effluent from the waste water treatment plant will require a consent to discharge whether it is mixed with surface water or discharged direct to the water course. An inspection/sampling chamber should be provided before the effluent is allowed to mix with any other discharge.

We look forward to receiving further information in due course

Yours sincerely

# Mr Richard Austen Planning Liaison Team Leader

If you have any questions regarding the above information please contact Sarah Victor Tel. 01543 404880.